Improvements in $N_{\rm eff}$ & isocurvature modes from CMB-S4 inform future GW observations.

Evangelos Sfakianakis

U.T. Austin & Harvard U.

CMB-S4 meeting

Based on

- previous work with Y. Cui & P. Saha
- ongoing work with R. Everett, G. Montefalcone & K. Freese

< □ > < @ > < 注 > < 注 > ... 注

A model-builder's view on CMB-S4

Evangelos Sfakianakis

U.T. Austin & Harvard U.

CMB-S4 meeting

Based on

- previous work with Y. Cui & P. Saha
- ongoing work with R. Everett, G. Montefalcone & K. Freese

(日) (四) (코) (코) (코) (코)

What we ponder:

- Transition to the **hot Big Bang** (reheating)
- String Theory
 - Axions & Moduli Fields
 - Inflation in String Theory & Swampland
- The **Standard Model** and beyond
 - Neutrinos
 - The Higgs & SM running

What we (hope to) see:

- CMB: CMB-S4 & others looking for B-modes, N_{eff}, ...
- **Relics** from the early universe
 - baryon number
 - Primordial Black Holes
 - Intergalactic magnetic fields

 Stochastic GWs: NANOGrav, LISA, CE, ...

Gravitation waves: a different window to new physics

 LIGO-Virgo discovery of GWs from BH mergers (2016)
 ⇒ GW astronomy is born

 Pulsar Timing Arrays find compelling evidence for stochastic GWs (2023)
 ⇒ Is it astrophysics (e.g. BHs) or hints of new particle physics / cosmology?

Necessary to evaluate the potential of **GWs** for discovering (hints of) **new physics** (e.g. DM)

∜

Correlated observables

Evangelos Sfakianakis CMB-S4

 $CMB-S4 \leftrightarrow GWs = 3/15$

Fate of rolling scalars

Evangelos Sfakianakis

 $CMB-S4 \leftrightarrow GWs$

Motivation

Questions:

- Are there simple models that produce observable GW's?
- What else do they predict?

Theoretical motivation:

- A plethora of scalar fields expected (e.g. axions, moduli)
- Some of them light w.r.t. the inflaton
- Inflationary dynamics can (will) displace them from their minimum $\sqrt{\langle \phi^2 \rangle} \sim H_{\rm infl} / \lambda^{1/4}, H_{\rm infl}^2 / m_{\phi}$
- While frozen at early times, they roll when $H \lesssim m_{
 m eff}$

Cui & EIS, arXiv:2310.13060 [hep-ph] १०००

Model	$m_{\phi}(\mathrm{eV})$	g	σ (eV)	λ_{χ}	$ u_{ m GW}({\sf Hz}) $	$\Omega_{ m GW}$
A	10^{-13}	10^{-75}	-	-	10 ⁻⁹	10^{-10}
A*	10 ⁸	10^{-36}	-	-	100	10^{-9}
В	10^{-13}	-	10^{-52}	10^{-75}	10 ⁻⁹	10 ⁻⁹
B*	10^{-2}	-	10^{-30}	10^{-53}	10 ⁻³	10^{-9}
B*	10 ⁸	-	10^{-10}	10^{-33}	10 ²	10 ⁻⁹
	λ_{ϕ}	g	σ (eV)	λ_{χ}	$ u_{ m GW}({\sf Hz}) $	$\Omega_{ m GW}$
С	10^{-35}	-	-	-	100	$10^{-11.5}$
D	10^{-79}	10^{-79}	-	-	10 ⁻⁹	10^{-12}

æ

$\frac{\text{Reminder on models:}}{V_A = \frac{m_{\phi}^2}{2}\phi^2 + \frac{g}{2}\phi^2\chi^2}$ $V_B = \frac{m_{\phi}^2}{2}\phi^2 + \frac{\lambda_{\chi}}{4}\chi^4 + \frac{\sigma}{2}\phi\chi^2$ $V_C = \frac{\lambda_{\phi}}{4}\phi^4$ $V_D = \frac{\lambda_{\phi}}{4}\phi^4 + \frac{g}{2}\phi^2\chi^2$ $\nu_{GW}^{peak} \propto \sqrt{H_{\text{osc}}} \propto \sqrt{m_{\phi}^{(eff)}}$

Model	$m_{\phi} (\mathrm{eV})$	g	$\sigma({\rm eV})$	λ_{χ}	$\nu_{\rm GW}({\rm Hz})$	Ω_{GW}
A	10^{-13}	10^{-75}	-	-	10^{-9}	10^{-10}
A*	10^{8}	10^{-36}	-	-	100	10^{-9}
В	10^{-13}	-	10^{-52}	10^{-75}	10^{-9}	10^{-9}
B *	10^{-2}	-	10^{-30}	10^{-53}	10^{-3}	10^{-9}
B *	10^{8}	-	10^{-10}	10^{-33}	10^{2}	10^{-9}
	λ_{ϕ}	g	$\sigma ({\rm eV})$	λ_{χ}	$\nu_{\rm GW}({\rm Hz})$	$\Omega_{ m GW}$
C	10^{-35}	-	-	-	100	$10^{-11.5}$
D	10^{-79}	10^{-79}	-	-	10^{-9}	10^{-12}

• = • • = •

э

$$u_{GW}^{peak} \propto \sqrt{H_{
m osc}} \propto \sqrt{m_{\phi}^{(eff)}}$$

Model	$m_{\phi}(\mathrm{eV})$	g	$\sigma ({ m eV})$	λ_{χ}	$\nu_{\rm GW}({\rm Hz})$	Ω_{GW}
A	10^{-13}	10^{-75}	-	-	10^{-9}	10^{-10}
A*	10^{8}	10^{-36}	-	-	100	10^{-9}
В	10^{-13}	-	10^{-52}	10^{-75}	10^{-9}	10^{-9}
B*	10^{-2}	-	10^{-30}	10^{-53}	10^{-3}	10^{-9}
B *	10^{8}	-	10^{-10}	10^{-33}	10^{2}	10^{-9}
λ_{ϕ}		g	$\sigma ({\rm eV})$	λ_{χ}	$\nu_{\rm GW}({\rm Hz})$	$\Omega_{ m GW}$
C	10^{-35}	-	-	-	100	$10^{-11.5}$
D	10^{-79} 10^{-79}				10^{-9}	10^{-12}

Wide range of GW frequency \Rightarrow Wide range of **new physics** scale

Reminder on models: $V_{A} = \frac{m_{\phi}^{2}}{2}\phi^{2} + \frac{g}{2}\phi^{2}\chi^{2}$ $V_{B} = \frac{m_{\phi}^{2}}{2}\phi^{2} + \frac{\lambda_{\chi}}{4}\chi^{4} + \frac{\sigma}{2}\phi\chi^{2}$ $V_{C} = \frac{\lambda_{\phi}}{4}\phi^{4}$ $V_{D} = \frac{\lambda_{\phi}}{4}\phi^{4} + \frac{g}{2}\phi^{2}\chi^{2}$ $\nu_{GW}^{peak} \propto \sqrt{H_{osc}} \propto \sqrt{m_{\phi}^{(eff)}}$

Model	$m_{\phi}({ m eV})$	g	$\sigma ({ m eV})$	λ_{χ}	$\nu_{\rm GW}({\rm Hz})$	Ω_{GW}
A	10^{-13}	10^{-75}	-	-	10^{-9}	10^{-10}
A*	10°	10^{-36}	-	-	100	10^{-9}
В	10^{-13}	-	10^{-52}	10^{-75}	10^{-9}	10^{-9}
B *	10^{-2}	-	10^{-30}	10^{-53}	10^{-3}	10^{-9}
B *	10^{8}	-	10^{-10}	10^{-33}	10^{2}	10^{-9}
	λ_{ϕ}	g	$\sigma ({ m eV})$	λ_{χ}	$\nu_{\rm GW}({\rm Hz})$	Ω_{GW}
С	10^{-35}	-	-	-	100	$10^{-11.5}$
D	10^{-79}	10^{-79}	-	-	10^{-9}	10^{-12}

Wide range of GW frequency \Rightarrow Wide range of **new physics** scale

e.g. Dark Matter candidate & potential source of PTA signal

Evangelos Sfakianakis

 $CMB-S4 \leftrightarrow GWs$

▲ 同 ▶ ▲ 国 ▶ ▲ 国

8/15

Complementary phenomenology: Dark Matter

After parametric resonance shuts off (at T_{end}) for massive and stable ϕ field, residual ϕ condensate can act as dark matter.

$$\Omega_{\phi,0} \equiv \frac{\rho_{\phi,0}}{\rho_{\rm tot,0}} = \frac{\frac{1}{2}m_{\phi}^2\phi_{\rm end}^2}{3M_{\rm Pl}^2H_0^2}\frac{g_{*,0}}{g_{*,\rm end}}\left(\frac{T_0}{T_{\rm end}}\right)^3$$

- Potential DM candidate & source of PTA signal
- Wave-like DM has distinct. signatures

9/15

Complementary phenomenology: Dark Radiation

Extra relativistic degrees of freedom are constrained by the CMB, currently at $|\Delta N_{\rm eff}| \lesssim 0.29$.

We have two extra sources of $\Delta N_{\rm eff}$: GW's and massless fields.

• GWs:
$$\frac{\Omega_{\mathrm{GW},0}h^2}{\Omega_{\gamma,0}h^2} = \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} \Delta N_{\mathrm{eff}} \Rightarrow \Delta N_{\mathrm{eff}} \simeq 10^4 \Omega_{\mathrm{GW},0}$$

Negligible contribution for $\Omega_{\mathrm{GW},0} \lesssim 10^{-9} \Rightarrow \Delta N_{\mathrm{eff}} \ll 0.01$

•
$$\Delta N_{\text{eff}} = \frac{4}{7} \alpha \xi \hat{g}_* \left(\frac{g_*}{\hat{g}_*}\right)^{4/3} \left(\frac{\hat{g}_{*,\text{osc}}}{g_{*,\text{osc}}}\right)^{1/3}$$

- Estimate: $\alpha \sim 10\% \Rightarrow \Delta N_{\rm eff} \sim 0.1$ and $\alpha \sim 1\% \Rightarrow \Delta N_{\rm eff} \sim 0.01$
- example for Model B with $m_{\phi} \sim 10^{-13}$ eV and nHz GWs, $\alpha = 1\%$ leads to $\Delta N_{\rm eff} = 0.016$

Neutrino phase shift

Free-Streaming Neutrinos and Their Phase Shift in Current and Future CMB Power Spectra

Gabriele Montefalcone,
 \star Benjamin Wallisch,
 $^{\bullet,\bullet,\star}$ and Katherine Freese
 $^{\star,\bullet,\bullet}$

arXiv: 2501.13788[astro-ph.CO]

$$N_{
m ef} = rac{8}{7} \left(rac{11}{4}
ight)^{4/3} rac{
ho_
u}{
ho_\gamma}$$

Model	$10^5\omega_b$	$10^4\omega_c$	$10^7\theta_s$	$10^3 n_{ m s}$	$N_{\rm eff}$	$N_{\text{eff}}^{\delta\phi}$	Y_p
ACDM	2.7	6.5	5.5	1.8	-	-	-
$\Lambda CDM + N_{eff}$	4.0	7.5	6.7	2.9	0.030	- 1	-
$\Lambda CDM + N_{eff}^{\delta \phi}$	2.7	6.5	16	1.8		0.078	-
$\Lambda CDM + N_{eff} + N_{eff}^{\delta \phi}$	4.1	7.5	16	2.9	0.031	0.080	-
$\Lambda CDM + Y_p$	4.1	6.6	5.8	2.8	-	_	0.0021
$\Lambda CDM + N_{eff} + Y_p$	4.1	13	14	2.9	0.076	_	0.0044
$\Lambda CDM + N_{eff}^{\delta \phi} + Y_p$	4.1	6.6	16	2.8	-	0.079	0.0022
$\Lambda \text{CDM} + N_{\text{eff}} + N_{\text{eff}}^{\delta \phi} + Y_p$	4.1	32	16	3.1	0.20	0.080	0.011
		(b) CM	B-S4				

 $\Delta \textit{N}_{\rm eff} = \mathcal{O}(0.01) \text{ is essential for these} \\ \text{models.}$

メロッ メポット メヨッ

Evangelos Sfakianakis

Affleck-Dine Baryogenesis

Problem:
$$\eta \equiv rac{n_b - n_{ar{b}}}{n_{\gamma}} \simeq 6 imes 10^{-10}$$

Answer by Affleck & Dine (1985): A **complex scalar field** carrying baryon number

$$V(\Phi) = \lambda_{\Phi} |\Phi|^4 + m_{\Phi}^2 |\Phi|^2 - A(\Phi^n + \Phi_*^n)$$

Do GWs offer a detection channel?

Between the SM hammer and the GW anvil

- For Φ to decay to baryons (before BBN), it is subject to kinematic conditions: m_Φ ≥ 2 GeV, m_χ ≥ 1 GeV
- For Φ asymmetry to be transferred to SM leptons via N before the EWPT $m_{\Phi} > 2m_N \gtrsim \mathcal{O}(0.1)$ GeV
- $\nu_{GW} \sim 30 \sqrt{m_{\Phi}/\text{GeV}}$ Hz, detectability $\nu_{GW} \lesssim 100$ Hz $\Rightarrow m_{\Phi} \lesssim 10$ GeV

A narrow range of masses & GW frequencies, right at the heart of CE & ET \Rightarrow **Testable prediction**

Evangelos Sfakianakis

 $CMB-S4 \leftrightarrow GWs = 13/15$

The ratio between isocurvature and adiabatic power is $\alpha_{II} \sim n^2 r \sim 3n^2 \times 10^{-3}$. (Starobinsky) From Planck: $\alpha_{II} < 3.9 \times 10^{-2}$ with tighter limits from ACT.

Room for constraints - discovery using CMB-S4 (to appear)

Evangelos Sfakianakis

 $CMB-S4 \leftrightarrow GWs$

14/15

Summary

- Simple spectator scalar fields \Rightarrow observable GWs
- Model-dependent: viable DM model -possible PTA connection

Constrainable $N_{\rm eff}$ with CMB-S4: Correlated signal

- Make Φ complex \Rightarrow AD baryogenesis
- GWs with frequency $\mathcal{O}(10-100)$ Hz \Rightarrow target for CE, ET
- New physics scale $\mathcal{O}(0.1-10)$ GeV \Rightarrow lab searches

