08/02/2024

CMB-S4 collaboration meeting

New PR4 polarized dust maps Elisa Russier erussier@lbl.gov

Work in collaboration with Shamik Ghosh and Jacques Delabrouille

Disclaimer: All the work shown here is preliminary!

Outline

- Why do we need to revise the foreground maps?
 - 2. Strategy to improve foreground maps: extended-GNILC
 - 3. Results and perspectives

Importance of foreground modeling

Power spectra of theoretical CMB signal and foregrounds

State of the art of foreground maps

- Official polarized dust Planck PR3 products (<u>A&A 641 (2020)</u>):
 - Commander (+PR4)
 - SMICA
 - GNILC (<u>A&A 596, A109 (2016)</u>): single and variable resolution maps

In this talk, focus on comparison with GNILC PR3 product

What can be improved?

 GNILC PR3 maps resolution for polarized dust is low (60–80 arcmin) in cleanest sky regions

⇒ We want high resolution and high SNR maps to better characterize the foreground emissions!

- 1. Why do we need to revise the foreground maps?
- Strategy to improve foreground maps: extended-GNILC
 - 3. Results and perspectives

Improving dust models: Method

Goal: Obtain a better polarized dust emission map: in resolution and SNR

xGNILC method:

- GNILC goal: reconstruct the diffuse emission of a complex component originating from correlated emission sources
- Basic idea: compute a signal-to-noise ratio to conduct a PCA locally in space and angular scale using a needlet (spherical wavelet) decomposition
- **xGNILC** (shown at yesterday's JSAC talk!): Extended GNILC implementation in Python, by Shamik Ghosh (arXiv:2312.07816)
- Specificity of xGNILC: Prior assumption of a parametric model for regions with low SNR

Observations for this analysis:

• Planck 30 GHz (for sync) + HFI 100–353 GHz

Improving dust models: Pipeline

Goal: Obtain a better polarized dust emission map: in resolution and SNR

- 1) Signal maps:
 - a) Subtract from PR4 frequency maps Wiener filtered CMB map
 - b) Mask the galactic plane + inpaint bright polarized sources
- 2) Nuisance maps:
 - a) Residual CMB
 - b) Instrumental noise
- 3) Put all these maps in KRJ
- 4) Perform xGNILC with 3 needlet bands
- 5) Recombine needlets into polarized galactic signal E, B maps at 10 arcmin

GNILC PR3 vs xGNILC PR4

Differences between GNILC PR3 and xGNILC PR4

		GNILC PR3		xGNILC PR4
Input maps		PR3		PR4 (less noisy)
Processing pipeline: needlet regions with low SNR		GNILC: Throw away		xGNILC: Use of a prior: MBB with T = 19.6K and β = 1.5 (<u>A&A 641 A11 (2020)</u>)
Single resolution at 80 arcmin		at	Variable resolution in function of SNR in region of sky	าร

- 1. Why do we need to revise the foreground maps?
- 2. Strategy to improve foreground maps: extended-GNILC
- Results and perspectives

Map-based comparison: 80 arcmin VS 10 arcmin

\rightarrow GNILC PR3 variable resolution and xGNILC PR4

GNILC PR3 polarized dust intensity, FWHM = 80 arcmin xGNILC PR4 polarized dust intensity, FWHM = 10 arcmin

Map-based comparison: 60 arcmin VS 10 arcmin

\rightarrow GNILC PR3 variable resolution and xGNILC PR4

60 arcmin

GNILC PR3 polarized dust intensity, FWHM = 60 arcmin xGNILC PR4 polarized dust intensity, FWHM = 10 arcmin

PR2 70% sky coverage with 5 degree apodisation

Power spectra comparison

 \rightarrow GNILC PR3 single resolution and xGNILC PR4: 80 arcmin

EE and BB autospectra GNILC PR3 vs xGNILC PR4 polarized dust map at 353 GHz

Consistency between GNILC PR3/PR4

P-P scatter plot between the thermal dust polarization amplitude GNILC PR3 vs xGNILC PR4 at 353 GHz

Conclusion and perspectives

- Higher angular resolution xGNILC PR4 polarized dust maps
- At the same resolution, lower noise at high ell due to PR4
- Next steps:
 - Obtain less noisy products at high resolution
 - Estimate the spectral index and temperature in patches to account for spatial variation for the prior used in low SNR regions
- CMB-S4: Future high resolution polarized dust emission templates for the Panex group