The Diffused Polarized ALPs (Axion-like Particles) Power Spectrum in the <u>Microwave Sky</u> <u>arXiv:2405.08879</u> (Published in JCAP)

Harsh Mehta

Department of Astronomy & Astrophysics, TIFR Mumbai, India

CMB-S4 Summer Collaboration Meeting 2nd August, 2024

Probing Axions with CMB-S4 using spatial anisotropic spectral distortion

- ▶ Axions are cold dark matter candidates.
- ▶ They have a weak interaction with photons.
- The CMB is almost an ideal blackbody with $T_{cmb} = 2.7255 \text{ K}$ and its power spectrum is well known.
- Deviations resulting from weak photon coupling can be probed to detect axions.

02-08-2024

CMB photon-ALP resonant conversion

▶ How it happens?

ALP-photon interaction Lagrangian (where g_{ay} is the ALP coupling constant):

 $\mathcal{L}_{int} = -\frac{g_{a\gamma}}{4} a F_{\mu\nu} \widetilde{F^{\mu\nu}} = g_{a\gamma} E \cdot B_t a ,$

▶ Where it happens?

Resonant condition:

$$m_a = m_{\gamma} = \frac{\hbar \omega_p}{c^2} \approx \frac{\hbar}{c^2} \sqrt{n_e e^2 / m_e \epsilon_0}$$

► How strong is it?

The probability of conversion at a location in a galaxy cluster:

 $P(\gamma \rightarrow a) \approx \pi \gamma,$

$$\gamma = \left| \frac{2 g_{a\gamma}^2 B_t^2 v_{(1+z)}}{\nabla \omega_p^2} \right|$$

► Observable effect:

Change in CMB intensity: $\Delta I(v) = P(\gamma \rightarrow a) I_{cmb}(v)$

Background signal from Unresolved Galaxy clusters

Galaxy clusters can be modelled as halos of mass range $10^{13} - 7.10^{15} M_{\odot}$

02-08-2024

Harsh Mehta

Harsh Mehta

The ALP diffused Background

02-08-2024

6

The CMB power spectrum

The Power spectrum is estimated as:

$$\widehat{C_{\ell}} = \frac{B_{\ell}^{-2}}{2\ell + 1} \sum_{m = -\ell}^{\ell} \widehat{a_{\ell m}} * \widehat{a_{\ell m}}$$

with B_{ℓ} being the beam function.

- The CMB primary anisotropy is frequency independent
 - Spatial and spectral variation can distinguish signals.

Halo Modelling of the ALP distortion signal

ALP Power spectrum can be separated into one and two halo terms

One halo: Correlations between locations within the same cluster

 $C_{\ell,1h}^{ax} = \int_{z_{min}}^{z_{max}} dz \frac{dV_c}{dz} \int_{M_{min}}^{M_{max}} dM \frac{dn(M,z)}{dM} |\alpha_\ell(M,z)|^2,$

Two halo: Correlations between locations in different clusters

$$C_{\ell,2h}^{ax} = \int_{z_{min}}^{z_{max}} dz \frac{dV_c}{dz} P_m \left(k = \frac{\ell + 1/2}{r(z)}, z \right) \times \left[\int_{M_{min}}^{M_{max}} dM \frac{dn(M,z)}{dM} b(M,z) a_\ell(M,z) \right]$$

where halo correlation has been used:

 $P_h(k, M_1, M_2, z) = b(M_1, z)b(M_2, z)P_m(k, z),$

ALP Background Unresolved Map **Galaxy** clusters **ALP** power spectrum CM ALP Power spectrum Variation with Minimum Redshift **Photon-ALP resonant conversion** - D_{1.1h} (Zmin = 0.5) - Di. 1h (Zmin = 1.5 D_{1,2h} (z_{min} = 0.5) --- D_{1,2h} (z_{min} = 1.5) CMB D Cosmic We 4 x 10³ 6 x 10³ 8 x 10³ 10 Aultinole (/)

(Relatively Weak)

Modelling the $a_\ell' s$

▶ The Electron density profile used for mock data :

$$n_{e}^{2} = Z \left[n_{0}^{2} \frac{\left(r/r_{c1} \right)^{-\alpha}}{\left(1 + r^{2}/r_{c1}^{2} \right)^{3\beta - \alpha/2}} \frac{1}{\left(1 + r^{\gamma}/r_{s}^{\gamma} \right)^{\epsilon/\gamma}} + \frac{n_{02}^{2}}{\left(1 + r^{2}/r_{c2}^{2} \right)^{3\beta_{2}}} \right],$$

▶ Magnetic field profile used for mock data:

$$B(r) = B_0 r^{-s}$$

(Bonafede et al., 2010 arXiv:1009.1233)

- ▶ Random profiles have been used
- ALP Mass range: $10^{-15} 10^{-11} \text{ eV}$
- Coupling constant $g_{a\gamma}$ range: $10^{-14} 10^{-11}$ GeV⁻¹ (Value used in the plot $g_{a\gamma} = 10^{-12}$ GeV⁻¹)

How does the ALP background spectrum look like?

▶ Two halo: Increases at low multipoles $(20 < \ell < 100)$ and then decreases

• One halo: Dominates at high mulitpoles

 Power spectrum shape independent of strength at high multipoles

How is the ALP signal different from other signals?

Can be distinguished in pixel, spectral and spatial domain

Future CMB experiments can constrain $g_{a\gamma}$ better than Particle Physics experiments

 Internal Linear Combination method (ILC) weights are given as:

 $|w_{a\gamma} = C_s^{-1} f_{a\gamma} \left(f_{a\gamma}^T C_s^{-1} f_{a\gamma} \right)^{-1}$

Here $f_{\alpha\gamma}$ is the ALP distortion spectrum

- Residual = Data Fiducial
- The bound on the ALP contribution in the residual is set by the covariance of the estimator
- The bounds using various detectors using mock data are obtained as follows:
 - CMB-S4: $g_{a\gamma} < 1.1 \times 10^{-12} \,\text{GeV}^{-1}$
 - Simons Observatory: $g_{a\gamma} < 1.9 \times 10^{-12} \text{ GeV}^{-1}$
 - ► *CMB-HD*: $g_{a\gamma} < 4.2 \times 10^{-13} \, \text{GeV}^{-1}$

Conclusion

- The ALP background signal will follow the distribution of galaxy clusters in the universe.
- The ALP power spectrum will differ from those of other signals.
- The ALP power spectrum dominates at low angular scales and increases with frequency.
- CMB-S4 can improve the constraints on coupling constant by more than an order from current bounds.

Thank you!!

Email: <u>hmehta.cosmo@gmail.com</u>

15