

picasso:

Painting intra-cluster gas on gravity-only simulations

Florian Kéruzoré CMB-S4 Collaboration Meeting August 2024

Context

- Simulations needed for cluster cosmology (SBv2, §6.1.4)
 - Halo mass function calibration
 - Covariances between observables
 - Analysis calibration (e.g. cluster detection, systematic calibrations, ...)
 - → Need realistic synthetic maps / catalogs
- Two kinds of cosmological simulations:
 - Hydrodynamic (include baryonic physics, but slow and uncertain)
 - Gravity-only / G-O (fast, but no baryons)
- → Need post-processing to create observables from G-O
 - In particular intracluster gas for SZ effects
 - Examples: Websky (Stein20); AGORA (Omori24); HalfDome (Bayer+24), ...

This work: New analytical+ML model to "paint" intracluster gas

The picasso model

• What is picasso?

- ML-powered model to "paint" gas on gravity-only halos
- From halo properties, predicts analytical mapping between halo potential and gas thermodynamics
- Trained on pairs of gravity-only / hydrodynamic simulations
- Strengths:
 - Flexible:
 - → Can be trained to accurately & precisely reproduce different observables from hydro simulations
 - \rightarrow Can be trained on new hydrodynamic simulations
 - Scaleable:
 - → Can take minimal inputs (halo catalog) or take advantage of full particle information
 - Fast, GPU-accelerated, differentiable (JAX)

The picasso model... more detailed

Model training

Trained on pair of gravity-only & hydrodynamic simulations

• $L = 576 \ h^{-1} \,\text{Mpc}$; $m_{\text{DM}} \sim 10^9 \ h^{-1} M_{\odot}$

- Halo masses $M_{500c} > 10^{13.5} \; h^{-1} M_{\odot} \rightarrow$ ~10,000 halos
- → Training:
 - Forward model gas properties of G-O halos
 - Train to reproduce properties of hydro counterparts: ($\rho_{\rm g}, P_{\rm tot}, f_{\rm nt}, P_{\rm th})$

Model training

- Trained on pair of gravity-only & hydrodynamic simulations
 - $L = 576 \ h^{-1} \,\text{Mpc}$; $m_{\text{DM}} \sim 10^9 \ h^{-1} M_{\odot}$
 - Halo masses $M_{500c} > 10^{13.5} \; h^{-1} M_{\odot} \rightarrow$ ~10,000 halos
- → Training:
 - Forward model gas properties of G-O halos
 - Train to reproduce properties of hydro counterparts: ($\rho_{\rm g}, P_{\rm tot}, f_{\rm nt}, P_{\rm th})$

Model training

- Trained on pair of gravity-only & hydrodynamic simulations
 - $L = 576 \ h^{-1} \,\text{Mpc}$; $m_{\text{DM}} \sim 10^9 \ h^{-1} M_{\odot}$
 - Halo masses $M_{500c} > 10^{13.5} \; h^{-1} M_{\odot} \rightarrow$ ~10,000 halos
- → Training:
 - Forward model gas properties of G-O halos
 - Train to reproduce properties of hydro counterparts: ($\rho_{\rm g}, P_{\rm tot}, f_{\rm nt}, P_{\rm th})$

Baseline model results

- Baseline model:
 - Train to reproduce results from non-radiative hydro run (no subgrid models)
 - Full input vector
- Results: for the training range ($r \in [0.1, 2] \times R_{500c}$),
 - Few-% accuracy on main property of interest (P_{th})
 - Scatter similar to "pasting" methods (Kéruzoré+23)
 - → Low expected impact on cosmology!

Testing set: halos not seen in training

Minimal model results

- Minimal model:
 - Non-radiative hydro run (no subgrid models)
 - Minimal input vector (M_{200c}, c_{200c})
- Results:
 - · Bias similar to baseline, scatter slightly degraded
 - \rightarrow Promising: can be used from minimal inputs

Testing set: halos not seen in training

Florian Kéruzoré — CMB-S4 Collaboration Meeting — August 2024

Subgrid model results

- Subgrid model:
 - Train on full-physics hydrodynamic simulation
 - Full (baseline) input vector
- Results:
 - Bias slightly worse and not constant with radius (still few-% at $r > 0.2R_{500c}$)
 - Scatter slightly degraded
 - → Promising! But further model investigation required

Testing set: halos not seen in training

Conclusions

- New gas model combining analytical model and AI/ML
 - Fast, GPU-enabled, differentiable
 - Flexible
- Promising first results:
 - High accuracy & precision on non-radiative hydrodynamic sims
 - Slightly degraded on full-physics hydrodynamics \rightarrow to be improved
- What's next?
 - Code + model (including trained models) to be published in ~weeks
 - Release of tSZ maps from G-O simulations: Last Journey, OuterRim
 - Paired with ongoing ANL work → multi-wavelength suites Radio sources (G. Campitiello), CIB (M. Mallaby-Kay), kSZ, galaxies (DiffSky team), (CMB-)Lensing
 - Interested in possible integrations to Data Challenges!
 - Continuous retraining as new hydrodynamic simulations are run

