# **Planck CO revisited**

#### Improved maps of Galactic CO line emissions



Shamik Ghosh (LBNL) with Mathieu Remazeilles and Jacques Delabrouille



CMB-S4 Summer Collaboration Meeting 2024

A&A vol 688 A64 / arXiv: 2312.07816

#### **Motivation and context**

- Next generation CMB experiments require improved models of Galactic emission.
- Improved models of Galactic foregrounds require improved maps of Galactic foreground.
- Current Galactic CO models are limited by the Planck CO data products.
- Our goal here is to produce low noise and low contamination full sky CO maps.
- Listen to Elisa Russier's talk tomorrow for an update on ongoing efforts to improve the thermal dust maps



#### **CO** molecular line emission

• CO is an asymmetric diatomic molecule with permanent electric dipole moment.

• Radiates at its rotational frequencies.

$$E_{\rm rot} = \frac{J(J+1)\hbar^2}{2m_e r_e^2} \qquad \Delta E_{J\to J-1} = \frac{J\hbar^2}{m_e r_e^2}$$

• The <sup>12</sup>C<sup>16</sup>O 1-0 emission frequency is 115.271 GHz.

 CO maps we discuss here are in units of brightness temperature, integrated over relative velocity range (K<sub>RJ</sub>km/s)





#### **CO line emission & Planck**

Excellent sensitivity of the Planck HFI bolometers allow extraction of full sky galactic CO maps from Planck observations.

#### Types of Planck CO data products:

- Single frequency Type-1 CO maps (CO<sub>1-0</sub>, CO<sub>2-1</sub>, CO<sub>3-2</sub>): Noisy but low dust contamination.
- Multi-frequency Type-2 CO maps (CO<sub>1-0</sub>, CO<sub>2-1</sub>): High signal-to-noise but known to have dust contaminations.
- Multi-frequency Type-3 CO maps (CO<sub>1-0</sub>, CO<sub>2-1</sub>, CO<sub>3-2</sub>)
- Commander CO map (CO<sub>2-1</sub>)



#### Planck 2013 results. XIII. Galactic CO emission

Planck Collaboration: P. A. R. Ade<sup>50</sup>, N. Aghanim<sup>60</sup>, M. I. R. Alves<sup>60</sup>, C. Armitage-Caplan<sup>55</sup>, M. Armaud<sup>75</sup>, M. Ashdown<sup>72,6</sup>, F. Atrio-Barandela<sup>19</sup>, J. Aumont<sup>60</sup>, C. Baccigalupi<sup>89</sup>, A. J. Banday<sup>85,10</sup>, R. B. Barreit<sup>60,8</sup>, J. G. Bartlett<sup>1,69</sup>, F. Battaner<sup>100</sup>, K. Benabed<sup>61,97</sup>, A. Benoît<sup>84</sup>, A. Benoit-Lévy<sup>56,61,97</sup>, J.-P. Bernardl<sup>10</sup>, M. Briesmaell<sup>13,62</sup>, P. Bielewicz<sup>82,40,88</sup>, J. Bochin<sup>75</sup>, J. J. Boch<sup>82,11</sup>, A. Bonald<sup>17</sup>, T. R. Bond<sup>17</sup>, J. Borrill<sup>14,92</sup>, F. R. Bouchet<sup>61,97</sup>, F. Boulanger<sup>60</sup>, M. Bridges<sup>72,6,64</sup>, M. Bucher<sup>1</sup>, C. Burigana<sup>50,34</sup>, R. C. Butler<sup>50</sup>, J.-F. Cardoso<sup>76,164</sup>, A. Catalano<sup>77,74</sup>, A. Chamballu<sup>75,16,60</sup>, R.-R. Chary<sup>57</sup>, Z. Chen<sup>57</sup>, L.-Y. Chiang<sup>65</sup>, H. C. Ching<sup>28,8</sup>, P. R. Christensen<sup>44,39</sup>, S. Church<sup>44</sup>, D. L. Clament<sup>55</sup>, S. Calenchél<sup>10</sup>, T. L. Clambach<sup>20,50</sup>, C. Compko<sup>17</sup>, L. Conduch<sup>27</sup>, A. Culuig<sup>17,4</sup>, A. Cuckin<sup>50,4</sup>, J. Cuckt<sup>56,48</sup>, C. Curtis<sup>50</sup>, C. Curtis<sup>50</sup>, C. Curtis<sup>50,47</sup>, Cuckin<sup>51,4</sup>, A. Cutalano<sup>77,44</sup>, Cuckt<sup>50,47</sup>, Cuckt<sup>50,47</sup>



## **Comparison of CO maps**





2500

#### Limitations of Type-1 CO maps



**Fig. 3.** The TYPE 1 CO  $J = 3 \rightarrow 2$  data product from Planck, shown here after smoothing to 30' resolution. We are showing a region  $\pm 90^{\circ}$  in Galactic longitude and  $\pm 30^{\circ}$  in Galactic latitude about the Galactic center. Ringing effects and systematic residuals are visible above and below the Galactic ridge.

Low S/N for Type-1 maps. CO<sub>3-2</sub> has systematic residuals





#### **Contamination in Type-2 maps**



#### Methodology

*Objective:* Post-process existing Planck CO data products (Type-1 and Type-2) to produce improved new CO data products.

Method outline:

- 1. Use all Type-1 and Type-2 Planck CO maps (5 maps in total). Trust the Type-1 maps more.
- 2. Preprocess the Type-2 maps to remove compact and tSZ source contaminations.
- 3. Do a needlet transform to allow localization in harmonic and pixel domain.
- 4. Exploit the correlation between the three line emissions.
- 5. Use a prior on the CO line ratios but only when the S/N is poor.

**xGNILC** 

- 6. Filter out systematics from the CO 3-2 map as a post-processing step.
- 7. Validate the new CO maps with independent CO observations (like Dame et al. 2001 and 2022).

We produce CO maps at NSIDE=1024 at 10 arcmin resolution.







Key difference with GNILC : retaining smaller scales where SNR is poor

#### **Data products**

- xGNILC CO map at  $N_{side}$  = 1024 for CO J=1-0, J=2-1, and J=3-2 lines.
- Corresponding xGNILC CO jackknife noise maps.
- Systematic uncertainty maps for the xGNILC data product.
- 100 realizations of the projected noise for each xGNILC CO map.
- All the masks used in the analysis and confidence mask for the data product.
- Beam transfer function of xGNILC data products.

Data products are available from: <a href="https://portal.nersc.gov/project/cmb/Planck\_Revisited/co/">https://portal.nersc.gov/project/cmb/Planck\_Revisited/co/</a>





**Fig. 8.** Top: the xGNILC CO  $J = 1 \rightarrow 0$  map, at output resolution of 10', and the corresponding jackknife noise map. Bottom: Similar maps for the Planck Type 1 CO  $J = 1 \rightarrow 0$  data product, and the jackknife noise of the Planck Type 1 CO  $J = 1 \rightarrow 0$  map, both smoothed to 10' resolution.







K km/s

K km/s

K km/s



## **CO 1-0**

#### **High Latitude Clouds**

For all pixels > 0.1 K km/s the correlation coefficient with Dame & Thaddeus 2022 North Sky Survey is 0.91

All maps smoothed to 10 arcmin









#### Summary

• New low contamination, low noise full sky CO maps from Planck observations.

• Data products are publicly available from:

https://portal.nersc.gov/project/cmb/Planck Revisited/co/

• We plan to update Galactic CO emission models in PySM and PSM using these new maps as templates.





#### Appendix



# Type 1 CO map

- Computed from linear combination of individual bolometer maps for a given frequency.
- Exploits the different responses of individual bolometers to the CO line.
- Component separation with a MILCA pipeline which removes certain spectral components while keeping the CO scaling (*F<sup>sky</sup>*<sub>CO</sub>) for the bolometers intact. Does an ILC.
- Components considered:
  - 100 GHz: CO, CMB(flat scaling)
  - $\circ$  217 GHz: CO, CMB, dust
  - o 353 GHz: CO, dust





### Type 2 CO map

- Computed by solving a linear system that assumes 4 emissions components: CO, CMB, free-free and dust
- Employs the Ruler algorithm to obtain a least squares solution.
- Channels used:
  - $\circ$   $\quad$  CO  $_{\rm 1-0}$ : 70 GHz, 100 GHz, 143 GHz and 353 GHz
  - $\circ$  CO<sub>2-1</sub>: 70 GHz, 143 GHz, 217 GHz and 353 GHz
- CMB is modelled as a flat scaling.
- Free-free is modelled as  $v^{-2.15}$  power law.
- Dust is modelled as a grey-body with  $T_{dust} = 17$  K and  $\Box_{dust} = 1.6$ .
- All channels reconvolved to common resolution of 15 arcmin.





#### Calibration

• We fit the CO mixing vector by fitting the following model:

 $\mathrm{CO}_{\mathrm{TypeX}}^{J} = a_{\alpha} \mathrm{CO}_{\mathrm{Dame}}^{J=1 \rightarrow 0} + K_{\mathrm{TypeX}}^{J}$ 

- We fit against the Dame et. al. 2001 CO 1-0 map in the Galactic plane.
- The fit is obtained globally or on 30 equal area patches, or on a Healpix NSIDE=16 grid.
- We use the mean of the 30 equal area patches as prior.

| Planck map<br>(type and line) | Global fit<br>(with offset) | Mean of 30<br>(with offset) | Median of 30<br>(with offset) |
|-------------------------------|-----------------------------|-----------------------------|-------------------------------|
| Type 1 $J = 1 \rightarrow 0$  | 1.12                        | $1.09\pm0.07$               | 1.08                          |
| Type 1 $J = 2 \rightarrow 1$  | 0.61                        | $0.60\pm0.06$               | 0.60                          |
| Type 1 $J = 3 \rightarrow 2$  | 0.21                        | $0.23 \pm 0.06$             | 0.22                          |
| Type 2 $J = 1 \rightarrow 0$  | 1.26                        | $1.26 \pm 0.07$             | 1.25                          |
| Type 2 $J = 2 \rightarrow 1$  | 0.61                        | $0.61\pm0.06$               | 0.62                          |





#### **xGNILC** pipeline



Noise whitening the data: 
$$oldsymbol{d}' = oldsymbol{\mathsf{C}}_n^{-1/2}oldsymbol{d}$$

Covariance of the whitened data :

$$\mathbf{C}_{d'} = [\mathbf{C}_n^{-1/2} \mathbf{A}] \mathbf{C}_t [\mathbf{A}^t \mathbf{C}_n^{-1/2}] + \mathbf{I}$$

Diagonalizing:

$$\mathsf{C}_{d'} = \mathsf{U}[\mathsf{\Lambda} + \mathsf{I}]\mathsf{U}^t$$

We use the Planck CO null maps to estimate the noise covariance.



#### **xGNILC** pipeline



Estimate dimensions of the CO signal subspace by minimizing the Akaike Information Criterion:

$$\min_{\alpha \in [1, N_{ch}]} \left[ 2\alpha + \sum_{k=\alpha+1}^{N_{ch}} (\lambda_k - \log \lambda_k - 1) \right]$$

Number of significant eigenvalues determine the dimension of the CO signal subspace





#### **xGNILC** pipeline

We project the whitened data d' on the CO signal subspace spanned the eigenvectors corresponding to the significant eigenvalues. This is an estimate of the whitened CO signal  $\hat{s}'$ . We undo the noise whitening:  $\hat{s} = C_n^{1/2} \hat{s}'$ 

Both of these steps are achieved by doing a multidimensional ILC:

$$oldsymbol{\hat{s}}_{ ext{ILC}} = oldsymbol{\hat{A}} [oldsymbol{\hat{A}}^t oldsymbol{\mathsf{C}}^{-1} oldsymbol{\hat{A}}] oldsymbol{\hat{A}}^t oldsymbol{\mathsf{C}}^{-1} oldsymbol{d}$$

Constructed from the significant eigenvectors (and eigenvalues) followed by *de-whitening* 

When the signal is below the noise we end up with no significant eigenvalue. In this case we get a Generalized Least Squares solution using priors on the CO mixing vector.

$$oldsymbol{\hat{s}}_{ ext{GLS}} = [oldsymbol{a}^t oldsymbol{\mathsf{C}}_n^{-1} oldsymbol{a}]^{-1} oldsymbol{a}^t oldsymbol{\mathsf{C}}_n^{-1} oldsymbol{d}$$

The priors are computed by fitting Planck CO maps with the Dame et. al. 2001 CO 1-0 map.



### CO 1-0 v dust

For all pixels > 0.1 K km/s the correlation coefficient with Dame & Thaddeus 2022 North Sky Survey is 0.91

500X 200 IRIS 5 '/pix, 100 μm (92.37) (127, -69)MJy/sr MJy/sr MJy/sr xGNILC CO  $J = 1 \rightarrow 0$ xGNILC CO  $J = 1 \rightarrow 0$ xGNILC CO / =  $1 \rightarrow 0$ 500X xGNILC CO J=1-0 (92, 37)(5, 38)(127,-69) K km/s K km/s K km/s -0.5 -0.5 -0.5 Dame & Thaddeus 2022 CO  $J = 1 \rightarrow 0$ Dame & Thaddeus 2022 CO  $/ = 1 \rightarrow 0$ Dame & Thaddeus 2022 CO  $J = 1 \rightarrow 0$ 500×500 pix 500×500 pi 500×500 Dame & Thaddeus 2022 CO J=1-0 1.5 '/pix, .5 '/pix, (92.37) (5, 38)(127, -69)K km/s K km/s K km/s -0.5 -0.5 -0.5

IRIS 100 µm

IRIS 100 µm

IRIS 100 µm



All maps smoothed to 10 arcmin



#### CO 3-2





Median of residuals

## **Post-processing CO 3-2**

• Compute residual systematics as:

 $\mathrm{CO}_{\mathrm{sys.}}^{3\to2} = \mathrm{CO}_{\mathrm{xGNILC}}^{3\to2} - \frac{a_{3\to2}}{a_{2\to1}} \mathrm{CO}_{\mathrm{xGNILC}}^{2\to1}$ 

- Median filter the residual map with galactic plane masking.
- Subtract filtered residual from xGNILC map.







K km/s

-1

#### **Systematic Uncertainty**

- We construct a multivariate distribution for the input mixing vector prior using the fits to 30 equal area patches.
- Run 200 simulation with input Planck CO maps but replacing the prior used in the GLS step.
- Does not affect the regions where the CO is above the noise (except for CO 3-2).
- Very small systematic uncertainty. CO3-2 uncertainty is higher due to post-processing.



#### **Difference** with input

We smooth both xGNILC and Planck Type-I CO maps to 30 arcmin resolution and show the difference as Type-1 - xGNILC.

More difference in the CO 3-2 map due to systematics correction.



