

Towards the next generation of large aperture telescopes, and probing the motions of the LSS.

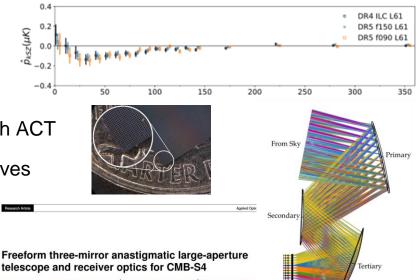
Patricio Gallardo - U. Chicago

Presenter Introduction

Patricio Gallardo

Fellow at Kavli Institute for Cosmological Physics at the University

of Chicago



Previous experience:

- Ph.D. in Physics at Cornell University: https://github.com/patogallardo/Thesis/
- Simons Observatory optical evaluation Gallardo, et al. SPIE proc. (2018)
- ACT optical modeling and characterization Gallardo et al. SPIE proc, (2018)
- Detector array development arXiv:1912.02902 Gallardo, Niemack et al. JLTP (2019)
- Data analysis: Detection of the pairwise kSZ effect with ACT Calafut, Gallardo, Vavagiakis et al Phys. Rev. D (2021)
- Development of an Anti-Reflection coating for THz waves Gallardo, Koopman, Cothard, et al App. Opt. (2016)
- Three-mirror Anastigmat development Gallardo et al. Appl. Opt. (2024)
- Optics Designs for AtLAST Gallardo et al. SPIE proc. (2024)
- Testing Gravity With the kSZ. (in prep.)

PATRICIO A. GALLARDO^A, ROBERTO PUDDU^b, KATHLEEN HARRINGTON^{C,d}, BRADFORD BENSON JOHN CARLSTROM^{A,C,J,K}, SIMON R. DICKER^I, NICK EMERSON¹, JON E. GUDMUNDSSON^{JA}, Mic LIMON¹, JEFF MCMAHON^{A,C,K}, JOHANNA M. NAGY¹, TYLER NATOL^{IA,C}, MICHAEL D. NIEMACK STEPHEN PADIN², JOHN RULL¹, SARA M. SIMON², AND THE CMB-S4 COLLABORATION ¹

------12e+03 mm

CMB-S4 Science Goals

Fore more details, see: <u>CMB-S4 Decadal White Paper</u> <u>CMB-S4 Science Case, Reference</u> <u>Design, and Project Plan</u>

Goal 1: Test models of inflation by measuring or putting upper limits on r, the ratio of tensor fluctuations to scalar fluctuations.

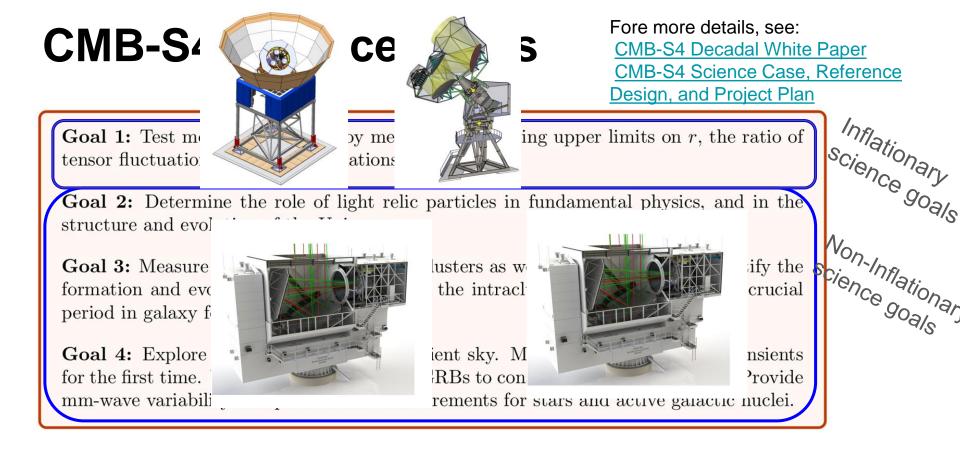
Goal 2: Determine the role of light relic particles in fundamental physics, and in the structure and evolution of the Universe.

Goal 3: Measure the emergence of galaxy clusters as we know them today. Quantify the formation and evolution of the clusters and the intracluster medium during this crucial period in galaxy formation.

Goal 4: Explore the millimeter-wave transient sky. Measure the rate of mm-transients for the first time. Use the rate of mm-wave GRBs to constrain GRB mechanisms. Provide mm-wave variability and polarization measurements for stars and active galactic nuclei.

CMB-S4 Science Goals

Fore more details, see: <u>CMB-S4 Decadal White Paper</u> <u>CMB-S4 Science Case, Reference</u> <u>Design, and Project Plan</u>

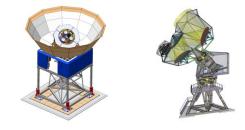

Goal 1: Test models of inflation by measuring or putting upper limits on r, the ratio of tensor fluctuations to scalar fluctuations.

Goal 2: Determine the role of light relic particles in fundamental physics, and in the structure and evolution of the Universe.

Goal 3: Measure the emergence of galaxy clusters as we know them today. Quantify the formation and evolution of the clusters and the intracluster medium during this crucial period in galaxy formation.

Goal 4: Explore the millimeter-wave transient sky. Measure the rate of mm-transients for the first time. Use the rate of mm-wave GRBs to constrain GRB mechanisms. Provide mm-wave variability and polarization measurements for stars and active galactic nuclei.

Inflationary Science goals Von-Inflation



Surveys of CMB-S4

The science goals motivate two surveys:

- A deep survey (3% of sky) for the inflationary science goal
 - Small aperture telescopes for B-mode searches
 - Large aperture (5-m class) for delensing
- A wide survey (70%) for the non-inflationary science goals The science goals to the science goals to the science goals bead to the science goals b
 - Large aperture telescopes

CMB-S4 Science Case, Reference Design, and Project Plan

CMB-S4 Collaboration

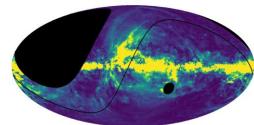
July 9, 2019

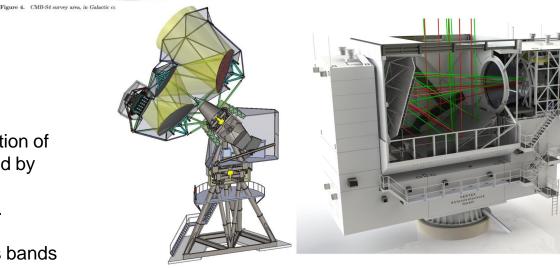
The science goals lead to the following measurement requirements.

- Low-resolution ultra-deep measurements (noise levels < $1\,\mu$ K-arcmin) over an exceptionally low-foreground region covering 3% of the sky are required to meet the primordial gravitational wave goals. These measurements must have high fidelity and low contamination over a wide range of angular scales and frequencies. Large-angular-scale measurements with resolution of around 30 arcminutes and well-determined beam properties and excellent control of systematic contamination are needed to image the *B*-mode polarization signature of the primordial gravitational waves. Small-angular-scale measurements with resolution of order 1.5 arcminutes are needed for removing the contamination of the degree-scale *B* modes caused by gravitational lensing of the much stronger CMB *E*-mode polarization, a process referred to as "delensing."
- High-resolution (≤ 1.5 arcminutes) deep and wide measurements at a noise level of 1 μ K-arcmin over approximately 70% of the sky (60% of the sky after applying a Galactic cut) are required to meet the light relic and legacy data goals.

Large Aperture Telescope concept

These science goals are met with two surveys.


Two surveys -> Two telescopes.


1) Deep-wide survey (2xCD)

- a) Non-inflationary science goals
- b) ~70% of sky, wide patch of sky
- c) High angular resolution (arcmin)
- d) 6m diameter, made of panels

2) Ultra-deep survey (TMA)

- a) Inflationary science
- b) Delensing: removal of contamination of the degree-scale B-modes caused by gravitational lensing.
- c) Small patch, 3% of sky coverage.
- d) Clean beams, gap-less mirrors
- e) Uniform camera coverage across bands
- f) 5m diameter.

The Crossed Dragone Telescope

10.0 7.5

5.0

2.5

-2.5 -5.0 -7.5

-10 (

-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 dBi Azimuth [dea]

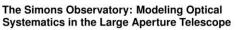
20

-20

6-meter diameter aperture

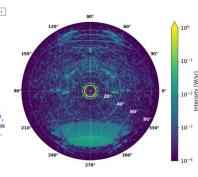
Made of paneled mirrors

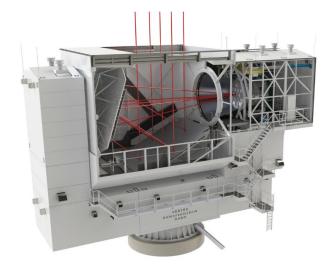
Freeform mirrors

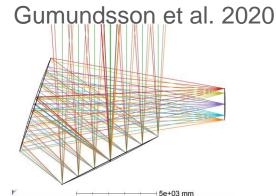

f/2.6

2020

Sep


Design in construction for the Simons Observatory LAT and CCAT


Applied Optics

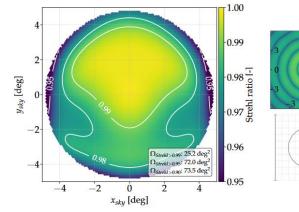


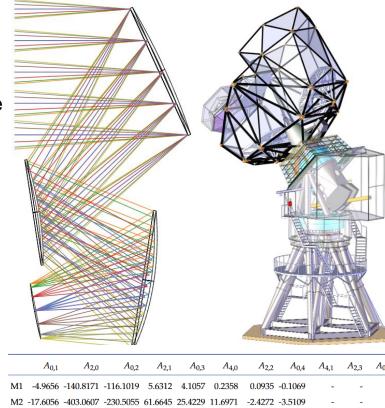
JON E. GUDMUNDSSON¹, PATHICIO A. GALLAROO², ROBERTO PUDDU³, SIMO N. DICKER⁴, ALEXANDRE E. ADLER¹, AAMIR M. AL⁵, ANDREW BZARKO⁶, GRACE E. CHESMORE⁷, GABRIELE COPP⁴, NICHOLAS F. COTHARD⁸, NADIA DACHLYTHRA¹, MARK DEVLM⁴, ROLANDO DÜNNER³, GIULIO FABBIAN⁶, NICHOLAS GALTIX¹⁰, JOSEPH E. GOLEG¹¹, SHUAY-PWU PATTY HO⁶, PETER C. HARGRAVE²¹, ANNA M. KOFMAN⁴, ADRIAN T. LEE⁵, ¹², MCHELE LIMON⁶, FREDERICC T. MATSUDA¹⁴, PHILIP D. MAUSKOPF¹⁵, KAVILAN MOODLEV^{15,17}, FEDERICC NATI³⁵, MICHAEL D. NIEMACK^{2, 19}, JOHN ORLOWSKI-SCHERFH⁴, LIMMA A. PAGE⁵, BRUCE PARTINGE²⁰, GIBAYEP PUGLISI¹⁷, CARISTIAN L. REICHARDT²², CARLOS E. SIERRA¹¹, SARA M. SIMOR²⁰, GRANT P. TEPLY¹⁰, CAROLE TUCKER¹², EDWARD J. WOLLCKK²², ZHILEX V⁴, AND NINGFENG ZHU⁴

¹ The Outer Kinin Centre, Department of Physics, Studiohan University, 65:-108 pt Stackholm, Swedon
¹
¹ Department of Physics, Control University, Heavy, J. Vield, U.S. H.
¹ Protitio do Astrofician and Centro de Anton-Ingenieria, Fanultaria de Fisica, Pontificia Universitad Caldica de Chile, Macul, Santiago, Chile
¹ Department of Physics, End Antonomou, University of Romphane, Physicaley, J.A. M.
² Department of Physics, Cander University of Caldionala, Physical, J.M. 1994, U.S.A.
³ Department of Physics, End Antonomou, University of Romphane, Physicaley, J.A. M.
⁴ Department of Physics, Indennity of Caldionala, Berkely, CA 94720, U.S.A.
⁵ Department of Physics, University of Caldionala, Berkely, CA 94720, U.S.A.
⁵ Department of Physics, University of Caldionala, Berkely, CA 94720, U.S.A.
⁵ Department of Physics, University of Caldionala, Berkely, CA 94720, U.S.A.
⁵ Department of Physics, University of Caldionala, Berkely, CA 94720, U.S.A.
⁵ Department of Physics, University of Caldionala, Berkely, CA 94720, U.S.A.
⁵ Department of Physics, U.S.A.
⁵ Department of Physics, University of Caldionala, Berkely, CA 94720, U.S.A.
⁵ Department of Physics, University of Caldionala, Berkely, CA 94720, U.S.A.
⁵ Department of Physics, University of Caldionala, Berkely, CA 94720, U.S.A.
⁵ Department of Physics, U.S.A.
⁵ Department of Physics, University of Caldionala, Berkely, CA 94720, U.S.A.
⁵ Department of Physics, University of Caldionala, Berkely, CA 94720, U.S.A.
⁵ Department of Physics, University of Caldionala, Berkely, CA 94720, U.S.A.
⁵ Department of Physics, University of Caldionala, Berkely, CA 94720, U.S.A.
⁵ Department of Physics, University of Caldionala, Berkely, CA 94720, U.S.A.
⁵ Department of Physics, U.S.A.
⁵ Department of Physics, University of Caldionala, Berkely, CA 94720, U.S.A.
⁵ Department of Physics, U.S.A.
⁵ D

The Three Mirror Anastigmatic Telescope

Three mirrors to correct for astigmatism, 9 deg fov at 1mm


Freeform, polynomially defined mirrors


$$z(x,y) = \sum_{i,j=0}^{i,j \in 0..5} A_{i,j} (x/R)^{i} (y/R)^{j},$$

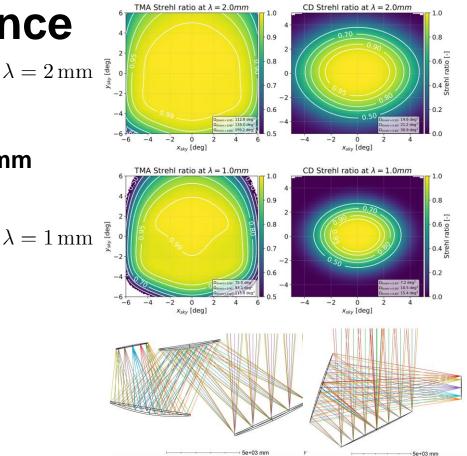
Lower f/# than previous designs (Padin 2018) to match the Crossed Dragone Chile LAT.

Gap-less mirrors.

Excellent image quality up to 280 GHz, 1.1mm

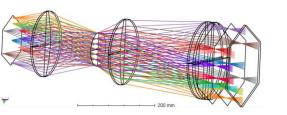
13 -22.1905 -330.6599 -280.4026 28.1685 17.4860 -2.1208 -10.8356 -5.7779 0.8436 1.9139 0.683

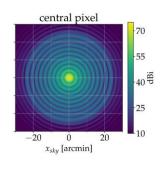
Telescope performance

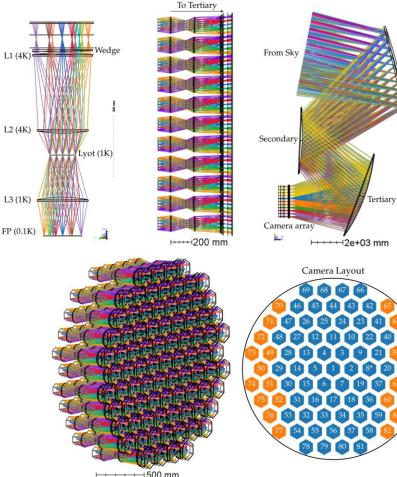

Gallardo 2022 SPIE proc.

Crossed Dragone:

- 6m diameter
- FoV: 4.5 deg at 1mm, 7.8 deg at 3mm Parshley et al. Arxiv:1807.06678
- f/2.6

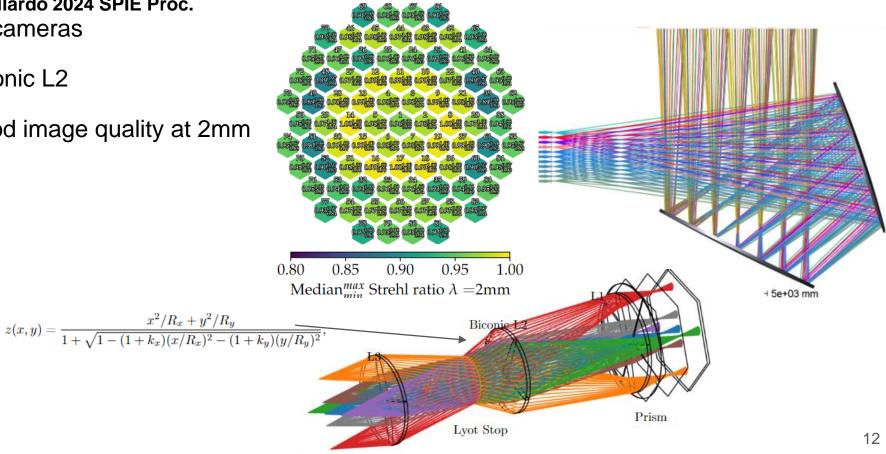

Three Mirror Anastigmat (TMA):


- 5m diameter
- FoV: 9.4 deg at 1.1 mm
- f/2.6



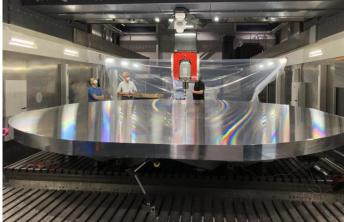
TMA Cameras

- Gallardo 2024 Appl. Opt.
 3 silicon lenses per camera
 - TMA: standard radially symmetric 0 $z(r) = \frac{(r/R)^2}{1 + \sqrt{1 - (1+k)(r/R)^2}}$ lenses
- 85 cameras arranged in a hexagonal pattern
- Lyot stop
- Alumina wedge, to correct telescope field curvature
- Accommodates ~100k detectors
- Performance:
 - 81/85 cameras at 1 mm
 - 85/85 cameras at 2 mm


Primary

Crossed Dragone Cameras

Gallardo 2024 SPIE Proc. 85 cameras


Biconic L2

Good image quality at 2mm

Status

- We have developed optical solutions for the array of cameras for the TMA and CD for CMB-S4
- TMA Primary mirror prototype has been built
- Primary mirror metrology results looks great. Natoli et al. Applied Optics.
- TMA optics: Gallardo 2024 Appl. Opt.
- CHLAT optics designs converging quickly (see Gallardo 2024 SPIE proc.) and working on prototyping

applied optics

Fabrication of a monolithic 5 m aluminum reflector for millimeter-wavelength observations of the cosmic microwave background

BRADFORD BENSON, 13.3 JOHN CARLSTROM, 13.4 ERIC CHAUVE NO CLAVEL," NICK EMERSON," PATRICIO GALLARDO," MIKE NIEMACK.** S

rated the fabrication of a monolithic, 5 m diameter, alumi millimeter wavelength telescopy that will be used for a

2. REFLECTO The San reflector des for the three-mirror in Fig. 1 and disc design briefly here, h telescore desire and TMA selescene d

annine mode of whenever about referench of 1.1 a face of a seffector will distort the beam parteen h mon. For the Thi

effector febrication was engineered and manage

kelvin during catting and mer nations in the reflector under a was ensured by the ambient to

control from a SIFA or line of the reflector mine 200 day

Life outside S4

ASO: 13 optics tubes using biconics (see KH's talk yesterday)

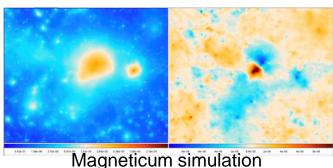
60,000 detectors into the LATR

2.5 uK-arcmin over 20,000 sq. deg. in 2034

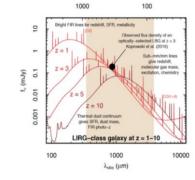
White paper with forecasts is currently in internal review.

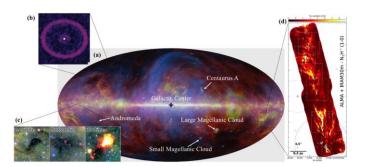
SO Nominal: LAT map noise

Frequency (GHz)	FWHM (arcmin)	$\begin{array}{c} \text{Baseline} \\ (\mu \text{K-arcmin}) \end{array}$	Goal $(\mu K$ -arcmin)	Frequency Bands	Detector Number	Optics Tubes
27	7.4	71	52	LF	222	1
39	5.1	36	27		222	
93	2.2	8.0	5.8	MF	$10,\!320$	4 L
145	1.4	10	6.3	IVII	$10,\!320$	1
225	1.0	22	15	UHF	5,160	2
280	0.9	54	37		5,160	


ASO: LAT map noise

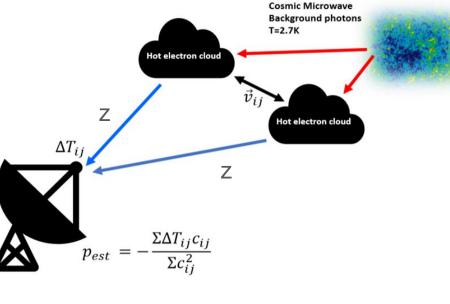
Baseline $(\mu K\text{-arcmin})$	$\begin{array}{c} \text{Goal} \\ (\mu \text{K-arcmin}) \end{array}$	Frequency Bands	Detector Number	Optics Tubes
58 	39 20	m LF	222 222	1
5.25 5.7	3.5 3.8	MF	20,640 20,640	8
14 33	9 22	UHF	10,320 10.320	4


AtLAST


Design study

- 50-meter telescope
- Mm-submm wavelengths
- 2-degree field of view
- Science:
 - ■Solar physics
 - Survey our galaxy to study gas clouds, dust, star and planet formation
 - ■Survey galaxies at high redshift
 - ■Study nearby galaxies
 - ■SZ effect down to galaxy scales

Design: AtLAST Mroczkowski et al. ArXiv:2402.18645 Optics: Gallardo et al. ArXiv:2406.11502

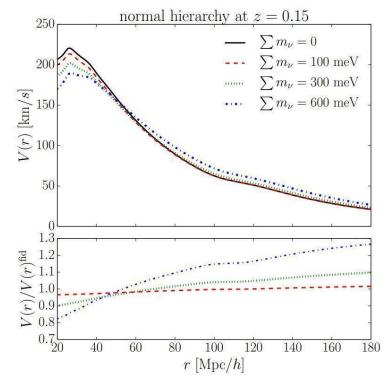


The Pairwise kSZ

The kSZ is a distortion due to the doppler shifted SZ effect.

$$\hat{p}(r,z) = -\frac{T_{\rm CMB}}{c} \bar{\tau} V(r,z)$$

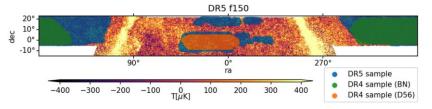
The kSZ can be extracted from the data if one knows the 3D positions of galaxy clusters, or a tracer of it.

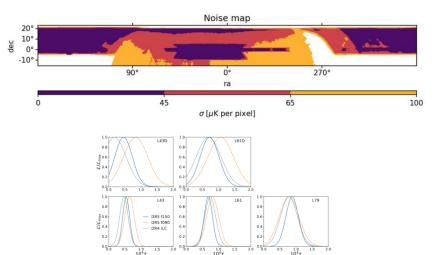

The Pairwise kSZ

In linear theory, the pairwise kSZ is proportional to a moment of the correlation function. It is sensitive to changes in the clumping of matter.

$$V(r,z) = -\frac{2}{3} \frac{f(z)H(z)r}{1+z} \frac{\bar{\xi}_h(r,z)}{1+\xi_h(r,z)}$$

It can be used to constrain:


- The sum of the neutrino mass
- σ₈
- The growth factor f
- Dark energy
- Gravity
- The baryon content



E. M. Mueller, F. de Bernardis, R. Bean, M. D. Niemack (2014), 1412.0592

The Pairwise kSZ

- Single frequency and component separated CMB maps
 + galaxy group and cluster catalogs (i.e. DESI, SDSS)
- Code evolving from ACTxSDSS projects; ACTxDESI

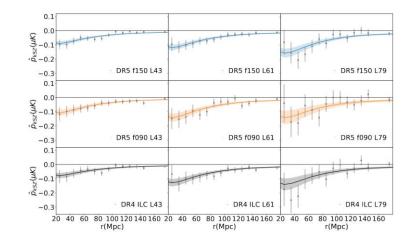
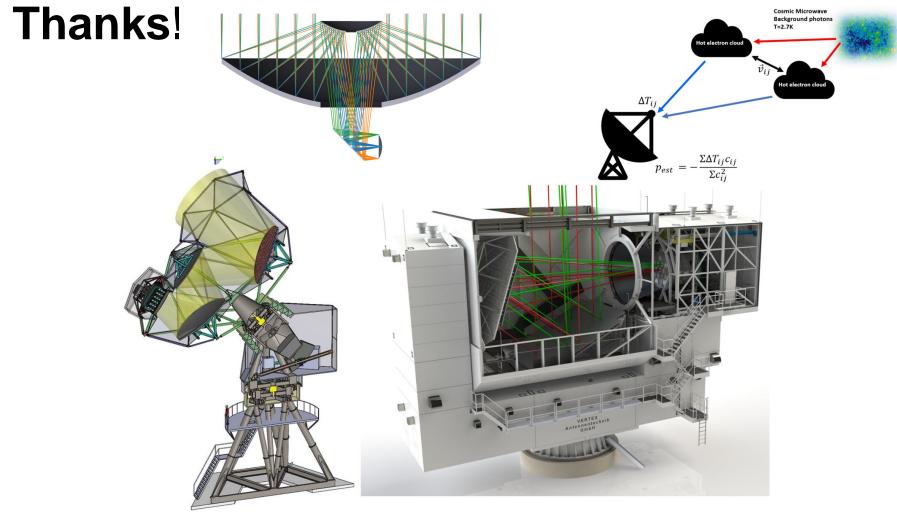
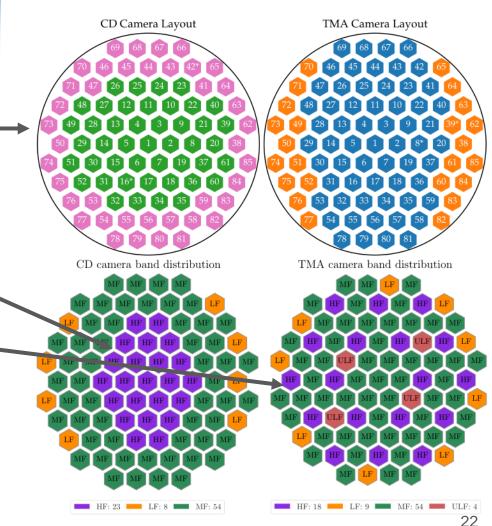



FIG. 4: The extracted pairwise signal for the DR4 ILC [black, lower] and DR5 f090 [orange, middle] and DR5 f150 [blue, upper] maps for the three cumulative luminosity-selected galaxy tracer samples, L43 [left], L61 [center], L79 [right], overlaid with the theoretical pairwise velocity model using the *Planck* best-fit cosmology corresponding to the best-fit $\bar{\tau}$ value and 1σ boostrap-derived uncertainties.

Calafut, Gallardo, Vavagiakis et al 2021.

Backup


Camera distribution

Two kinds of cameras for the 85 tubes

Frequency distributions according to optical performance:

CD: best image quality at the center

TMA: uniformly good image quality

