Measuring spectral distortion anisotropies with the Square Kilometer Array

David Zegeye, Thomas Crawford, Jens Chluba, Matthieu Remazeilles, and Keith Grainge

Based on: 2406.04326 2303.00916

CMB power spectrum and Gaussianity

Disconnected regions of Cosmic Microwave Background (CMB) temperature anisotropies are correlated and nearly scaleinvariant

Perturbations believed to be quantum-scale fluctuations stretched to macroscopic scales by inflation

CLOSE-UP VIEWS OF THE CMB

COBE: 1990 map Resolution: 7°

WMAP: 2013 map Resolution: 0.5° (5 times more sensitive than COBE)

Planck: 2013 map Resolution: 0.16° (15 times more sensitive than COBE)

CMB power spectrum and Gaussianity

For non-interacting quantum fields, perturbations follow a Gaussian distribution. Can parameterize non-Gaussianity as:

$$\Phi = \Phi_G + f_{NL} \Phi_G^2$$

Planck 2018 constrains the primordial power spectrum around $k_* \approx 0.05 Mpc^{-1}$, as well as $f_{NL} < 10$. Upcoming surveys will reach $f_{NL} \sim O(1)$.

Probing small-scales: μ -Distortions

For $5 \times 10^4 < z < 2 \times 10^6$, energy injections thermalized through distorting the CMB blackbody:

$$\frac{1}{\mathrm{e}^{x}-1} \rightarrow \frac{1}{\mathrm{e}^{x+\mu}-1}$$
$$\mu \approx 1.4 \frac{\delta E}{E}$$

Small-scale power spectrum

Since photons are redistributing energy across the plasma, acts as a form of energy injection into the bath

$$\frac{\delta E}{E} \propto \int \frac{d\mathbf{k}}{2\pi} k^2 P(k) W(k)$$

 μ traces small-scale power!

μ -anisotropies from perturbation theory

Perturbations in the metric and heating rate induce μ -anisotropies from an initially isotropic μ -distortion

Kite et al (2022)

μ -anisotropies from non-Gaussianity

Anisotropies in μ exist if long-wavelength modes of size k_L modulate the amplitude of small-scale power [i.e. spatially-varying $P_{\zeta}(k_s)$]

Constraining small-scale power & non-Gaussianity

Kite et al (2022)

Foregrounds strongly obscure μ -distortions

For CMB-S4, atmosphere weakens our low- ℓ signal

Zegeye et al (2023a)

Survey ($\mu = 2 \times 10^{-8}$)	$\sigma(f_{NL})$	$\sim \sigma(\mu)$
CMB-S4	804	$\sim 2 \times 10^{-5}$
(Deep; 99% atmo. corr.)	(246)	(~ 5 × 10^{-6})
LiteBIRD	826	$\sim 2 \times 10^{-5}$
(Remazeilles et al 2021)	(91)	(~ 2 × 10 ⁻⁶)

Improving constraints for ground-based survey

- More frequency channels to clean out foregrounds
- Since atmosphere is the main challenge, want to observe at frequencies where atmosphere is reduced and detectors where atmosphere is highly correlated
- Most noticeable, μ signal peaks at low frequencies

The Square Kilometer Array is expected to observe from 350 MHz - 15 GHz, with access to 1000s of frequency channels

Noise level comparison

Survey	Survey area	N _{dish}
SKA1-Mid	20,000 deg ²	133+64 (MeerKat)

- SKA radio dish can operate in "single-dish" mode
- SKA1 with a single channel, $\Delta v = 1 GHz$, t = 1 yr:

$$\sqrt{C^{TT}} \sim 20 \ \mu k - arcmin, \sqrt{C^{\mu\mu}} \sim 4 \ \mu k - arcmin$$

"Red"-Noise

Atmosphere appears to be negligible in MeerKAT data, but time-correlated noise (1/f) will lead to large-scale features in our maps. The point at which the frequency associated with red-noise is comparable to the whitenoise levels is the "knee"-frequency, f_k .

From MeerKAT data, $f_k \sim 0.1 Hz$, impacting $\ell < 50$. Li et al (2020) find red-noise is >99% correlated between frequency bands (0.96 - 1.67 GHz) and can be subtracted to levels below instrumental noise.

Complex foregrounds

Assumption for S4-only forecast is smooth foregrounds

Spatial variation of spectral index complicates our ability to describe foregrounds with a single SED

Synchrotron will easily be the most significant foreground impacting μ at low frequencies

High-resolution sky map

Low-resolution sky map

Complex foregrounds

Perform a perturbative expansion around β to account for spatial variation

$$f(\nu, \bar{\beta}, \beta) = f_0(\nu, \bar{\beta}) + \\\sigma(\beta)\partial_{\bar{\beta}}f_0(\nu, \bar{\beta}) + \\\sigma(\beta)^2\partial_{\bar{\beta}}\partial_{\bar{\beta}}f_0(\nu, \bar{\beta}) + \cdots$$

This analytic approach likely more pessimistic than if we did a map-based analysis

Survey ($\mu = 2 \times 10^{-8}$)	$\sigma(f_{NL})$	$\sim \sigma(\mu)$
SKA1 only	31 – 234 (8)	$6 \times 10^{-7} - 5 \times 10^{-6}$ (2 × 10 ⁻⁷)
SKA1+LiteBIRD	23 — 92 (6)	$5 \times 10^{-7} - 2 \times 10^{-6}$ (1 × 10 ⁻⁷)

Parameter space (for illustration purposes!)

Chluba et al (2019)

Conclusion & future steps

SKA in single-dish mode can improve constraints on the power spectrum and f_{NL} from μ -anisotropies. Need simulations-based forecast to fully understand effects of spatially-varying foreground parameters!

Since atmosphere and foreground removal is better, potential for use in measuring B-modes.

Interferometer mode could improve measurements of the primary CMB and secondaries at $\ell > 5000$, potential for joint analysis with high-resolution CMB experiments like S4 or HD.

Extra Slides

Boltzmann Equation

$$\frac{\partial \mathbf{y}_{0}^{(0)}}{\partial \eta} = \tau' \theta_{z} \left[M_{\mathrm{K}} \mathbf{y}_{0}^{(0)} + \mathbf{D}_{0}^{(0)} \right] + \frac{\mathbf{Q}'^{(0)}}{4},$$
(2.1a)

$$\frac{\partial \mathbf{y}^{(1)}}{\partial \eta} + \hat{\mathbf{y}} \cdot \nabla \mathbf{y}^{(1)} = -\mathbf{b}_{0}^{(0)} \left(\frac{\partial \Phi^{(1)}}{\partial \eta} + \hat{\mathbf{y}} \cdot \nabla \Psi^{(1)} \right) + \tau' \left[\mathbf{y}_{0}^{(1)} + \frac{1}{10} \mathbf{y}_{2}^{(1)} - \mathbf{y}^{(1)} + \beta^{(1)} \mathbf{\chi} \mathbf{b}_{0}^{(0)} \right] + \frac{\mathbf{Q}'^{(1)}}{4} \quad (2.1b) + \tau' \theta_{z} \left\{ M_{\mathrm{K}} \mathbf{y}_{0}^{(1)} + \mathbf{D}_{0}^{(1)} + \left[\delta_{\mathrm{b}}^{(1)} + \Psi^{(1)} \right] \left(M_{\mathrm{K}} \mathbf{y}_{0}^{(0)} + \mathbf{D}_{0}^{(0)} \right) + \Theta_{0}^{(1)} \left(\mathbf{D}_{0}^{(0)} + M_{\mathrm{D}} \mathbf{y}^{(0)} - \mathbf{S}^{(0)} \right) \right\},$$

$$\mathbf{D}^{(0)} = \left(\gamma_{T} x_{c} \mu^{(0)}, 0, 0, \dots, 0, -\gamma_{N} x_{c} \mu^{(0)} \right)^{T}, \qquad \mathbf{D}^{(1)} = \left(\gamma_{T} x_{c} \mu^{(1)}, 0, 0, \dots, 0, -\gamma_{N} x_{c} \mu^{(1)} \right)^{T}, \\ \dot{\mathbf{Q}}^{(0)} = \left(0, \frac{\dot{\mathbf{Q}}_{\mathrm{c}}^{(0)}}{\rho_{z}}, 0, \dots, 0, 0 \right)^{T}, \qquad \dot{\mathbf{Q}}^{(1)} = \left(0, \frac{\dot{\mathbf{Q}}_{\mathrm{c}}^{(1)}}{\rho_{z}} + \Psi^{(1)} \frac{\dot{\mathbf{Q}}_{\mathrm{c}}^{(0)}}{\rho_{z}}, 0, \dots, 0, 0 \right)^{T}, \\ \mathbf{S}^{(0)} = \left(0, \delta_{\gamma,0}^{(0)} + 4\Theta_{\mathrm{e}}^{(0)}, -4\Theta_{\mathrm{e}}^{(0)}, \dots, 0, 0 \right)^{T}, \qquad \mathbf{y} = \left(\Theta, \mathbf{y}, \mathbf{y}_{1}, \dots, \mathbf{y}_{n}, \mu \right)^{\mathrm{T}}$$

μ -anisotropies from isotropic y-distortions

