CMBS4

2024 Advances in Neutrino Physics Driven by Cosmological Data

CMB-S4 Summer Collaboration meeting

Helena Garcia Escudero (she/her)

garciaeh@uci.edu

08/01/2024

Cosmological observations and Neutrino physics

- CMB-S4 impact on our understanding of the Universe:
 - Inflation.

• Neutrino physics

- 1.- Sum of the neutrino masses
- 2.- Effective number of light relativistic particles
- 3.- Beyond Standard Model Scenarios

What is the value of the neutrino mass?

IMAGE CREDIT: https://phys.org/news/2018-06-katrin-neutrino-mass.html

CMB-S4 CMB-S4 Summer Collaboration | August 2024

- KATRIN upper limit on effective electron anti-neutrino mass 0.8 eV (doi: 10.1038/s41567-021-01463-1)
- Cosmology can constrain neutrino mass > $\frac{20 \text{ times better}}{20 \text{ times better}}$ today already!* arxiv 2404.03002 $\Lambda CDM + \sum m_{\nu}$ DESI+CMB $\sum m_{\nu} < 0.072 \text{ eV}$ [95% CL]

DESI+CMB-S4 sensitivity 2-3 **o** to the minimal neutrino mass (arxiv: 1610.02743) (58 meV from oscillation experiments, i.e.: Super-Kamiokande, SNO, KamLAND).

We found employing most robust data sets, statistical validations, theory accuracy :

P18+DESI(BAO)	σ
Preference $\sum m_{\nu} = 0$ over NO	1.54
Preference NO over IO	1.86

H.Garcia Escudero and K. Abazajian 2024 (in prep)

We are already approaching it today!

CMB-S4 expected to be sensitive to Σm_{i} in the minimal mass scenario.

4

- Possible origin of "negative" neutrino mass bounds:
 - -CMB lensing arxiV: 2407.07878
 - -CMB polarization determination of $\boldsymbol{\tau}$
 - z = 0.7 BAO systematics. arxiV: 2404.03002
- Unphysical negative masses weak tension at <~ 2σ but worth exploring.
- Future CMB-S4 data study this discrepancy.

or of ∑m_y erred from + ACT ℷ + DESI

68%)

Effective Number of Neutrino Species, \mathbf{N}_{eff}

- Total cosmological number density of neutrinos
- $N_{eff} = 3 \implies$ neutrinos instantaneously decoupled from the primordial plasma.
- Neutrino properties early universe $\rightarrow (N_{eff} = 3.044)$ CMB-S4 observation with 2-3 σ sensitivity on N_{eff} can find:

 N_{eff} consistent with 3.044 \rightarrow • Confirmation of standard cosmology Precise understanding thermal condition arxiV 1807.06209 Precise understanding thermal conditions universe.

 $n_
u = N_{
m eff} \left(rac{3}{4}
ight) \left(rac{4}{11}
ight) n_\gamma,$

N_{eff} significantly different from 3.044 = signature of new physics!

CMBS4

N_{eff} is a preferred model comparable with other exiting candidates

Short baseline anomalies and Sterile neutrinos

- N_{eff} higher than 3.044 = new physics =?? hidden neutrino sector!
- Short baseline neutrino oscillations results (Super-Kamiokande, LSND, MiniBooNE) and Gallium anomaly (i,e.: SAGE, GALLEX, BEST), hint richer neutrino sector.
- More than 3 active neutrinos with one (or more) sterile flavors.

Preliminary results:

 We find >2σ preference eV sterile model compared to ΛCDM using Planck CMB +BAO (DESI).
 H.Garcia Escudero and K. Abazajian 2024 (in prep)

Conclusions and upcoming future

- Cosmological observations are a very powerful tool for <u>high precision</u> <u>determination</u> neutrino cosmological parameters.
- Combined cosmological probes (CMB-S4 + BAO) revolutionize understanding of neutrino physics:
 - 1.- Test standard cosmological model predictions.
 - 2.- Shred light to existing cosmological anomalies.
 - 3.- Test new physics.
- Upcoming observational results next decade critical understanding Universe!

Thank you for attention! Questions?

Helena Garcia Escudero

(garciaeh@uci.edu)

Backup slides

Helena Garcia Escudero

(garciaeh@uci.edu)

N_{eff} significantly different from 3.044 = signature of new physics!

66

2.7

3.0

 $N_{\rm eff}$

3.3

3.6

68

 H_0

66

70

72

• Explore alleviation cosmological tensions

arxiv: 2107.10291

⊻⊼CMBS4

4 CMB-S4 Summer Collaboration | August 2024

LRT Universes might also be driving a < neutrino masses

-LRT universes + new neutrino physics broad new observationally-consistent & novel cosmologies!

-DR can be a combination of thermal + non thermal radiation **hermal radiation hermal radiation**

https://arxiv.org/pdf/2309.11492.pdf

Conclusions and upcoming future

Combined probes CMB-S4 experiment + BAO precision neutrino cosmological parameters (within LCDM):

$$\sigma \left(\sum_{m_{
u}} m_{
u} \right) = 16 \, \mathrm{meV} \,,$$

 $\sigma \left(N_{\mathrm{eff}} \right) = 0.020 \,,$

Lance CMB S4 arxiv 1309.5383