Temperature and Polarization Anisotropy of the Atmosphere

CMB-S4 Meeting 2024

Anna Coerver, Jessica Zebrowski, Satoru Takakura, Bill Holzapfel

Atmospheric Temperature Anisotropy

• Time-varying and anisotropic: not a fixed signal, but a source of additional noise power that increases rapidly with spatial scale

Temperature anisotropy is mitigated by experiment location (high and dry) and heavy filtering in mapmaking

Chile and South Pole atmospheres differ

Temperature amplitude distribution at the South Pole

Median temperature anisotropy power at the South Pole is ~100x lower than in Chile

Coerver et al. 2024

Atmospheric Polarization Anisotropy

Why is the atmosphere a problem?

- 2000-2015: Extensive studies on temperature atmospheric noise at both Chile and Pole (*Bussman 2005, Lay and Halverson 2000, Errard 2015, etc*)
- 2019: Polarized atmospheric noise detected by POLARBEAR in Chile (*Takakura* <u>2019</u>)
 - "Bursts" of horizontally polarized signal detected
- 2023: Polarized atmospheric noise detected by CLASS in Chile (<u>Li 2023</u>)
- 2024: Polarized atmospheric noise detected by SPT at the South Pole (<u>Coerver 2024</u>)

- 2000-2015: Extensive studies on temperature atmospheric noise at both Chile and Pole (*Bussman 2005, Lay and Halverson 2000, Errard 2015, etc*)
- 2019: Polarized atmospheric noise detected by POLARBEAR in Chile (<u>Takakura</u> <u>2019</u>)
 - "Bursts" of horizontally polarized signal detected
- 2023: Polarized atmospheric noise detected by CLASS in Chile (<u>Li 2023</u>)
 - "Bursts" of horizontally polarized signal detected
 - Measured frequency scaling
- 2024: Polarized atmospheric noise detected by SPT at the South Pole (<u>Coerver 2024</u>)

- 2000-2015: Extensive studies on temperature atmospheric noise at both Chile and Pole (*Bussman 2005, Lay and Halverson 2000, Errard 2015, etc*)
- 2019: Polarized atmospheric noise detected by POLARBEAR in Chile (<u>Takakura</u> <u>2019</u>)
 - "Bursts" of horizontally polarized signal detected
- 2023: Polarized atmospheric noise detected by CLASS in Chile (<u>Li 2023</u>)
 - "Bursts" of horizontally polarized signal detected
 - Measured frequency scaling
- 2024: Polarized atmospheric noise detected by SPT at the South Pole (<u>Coerver 2024</u>)
 - "Bursts" of horizontally polarized signal detected
 - Measured frequency scaling, spatial scaling, elevation scaling
 - Measured amplitude of signal over 4 years of Austral winter observing

- 2000-2015: Extensive studies on temperature atmospheric noise at both Chile and Pole (Bussman 2005, Lay and Halverson 2000, Errard 2015, etc)
- 2019: Polarized atmospheric noise detected by POLARBEAR in Chile (Takakura 2019)
 - "Bursts" o
- 2023: Polari

 \bigcirc

Polarized atmosphere is a recent area of research that warrants further study "Bursts" o

(Li 2023)

- Measured frequency scaling Ο
- 2024: Polarized atmospheric noise detected by SPT at the South Pole (Coerver 2024)
 - "Bursts" of horizontally polarized signal detected 0
 - Measured frequency scaling, spatial scaling, elevation scaling 0
 - Measured amplitude of signal over 4 years of Austral winter observing Ο

Polarized atmosphere as a contaminating signal

peaks at large angular scales \rightarrow **potential problem for GW B-modes**

Polarized Atmosphere at Chile and Pole

- Detected by POLARBEAR and CLASS in Chile, and now SPT at the South Pole
- Bursts of horizontal (Stokes -Q) polarized radiation

Polarized Atmosphere at Chile and Pole

- Detected by POLARBEAR and CLASS in Chile, and now SPT at the South Pole
- Bursts of horizontal (Stokes -Q) polarized radiation

SPT-3G

For the South Pole site, we have characterized:

- Frequency scaling
- Spatial scaling
- Elevation scaling
- Amplitude distribution down to the noise floor

And confirmed that these measurements align with theory.

Theoretical Background What is the physical mechanism of polarization from clouds? Scattering Particle radius⁶ Frequency⁴ horizontally polarized ice crystals scattered light U thermal ground emission SPT

Theoretical Background

What is the physical mechanism of polarization from clouds?

State of polarized atmosphere knowledge: frequency scaling

- Frequency scaling with SPT-3G
 - Scaling index $\alpha = 3.47$
 - Aligns with a combination of **Rayleigh scattering** ($\alpha = 4$) of thermal radiation from the ground and **thermal emission** ($\alpha = 2$) by ice crystals in the atmosphere
- CLASS measured a different scaling in the case of extreme atmosphere

State of polarized atmosphere knowledge: spatial scaling

- Scaling index of Q and T roughly consistent with Kolmogorov turbulence index of -2.67
- Large power on large angular scales \rightarrow problem for GW B-modes

State of polarized atmosphere knowledge: elevation scaling

- Elevation scaling: signal peaks at low elevation
- Polarized signal drops more steeply than temperature signal

Amplitude distribution at the South Pole

- Strong frequency dependence means that detection is rare at 95 GHz and most common for 220 GHz
- Amplitude distribution can be scaled for any elevation, observing band, and angular scale

The questions for CMB-S4 in Chile...

How does the signal impact map noise?

How effective are mitigation strategies?

We don't know!

Mitigation

- Polarized atmospheric effects are well-mitigated in SPT-3G data through downweighting contaminated data
- This relies on the signal being intermittent and infrequent
 - Shows up in ~20% of SPT-3G maps, small penalty in data volume after mitigation methods

In conclusion

What we know about polarized atmosphere:

- Time-varying
- Horizontally polarized
- Steep frequency scaling
- Signal increases with angular scale
- Signal decreases with elevation
- Amplitude distribution at South Pole shows it is rarely a problem

 \rightarrow can model the impact of polarized atmosphere for any experiment configuration at the South Pole (see our <u>posted paper</u>)

Important to understand:

- Frequency scaling in Chile
- Amplitude distribution in Chile

We encourage groups with CMB data from Chile to quantify the polarized atmosphere so that the impact on CMB-S4 can be accurately modeled!