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HWP Modulation

A HWP has “fast” and “slow” optical axes
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The thickness is chosen so there is a 180 deg. phase
shift of two orthogonal polarizations

Therefore, the polarization is flipped around the fast
axis.

The polarization rotates at 2x the rotation frequency
of the HWP and the signhal is therefore modulated at
4x the rotation frequency
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Polarization Differencing: HWP and Bolometer Differencing
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2 Polarizations from sky

 Both Techniques can work well and have been demonstrated
* Detailed systematic error estimates based on measured instrument models
SO willdemonstrate HWP systematic error performance at lower noise levels than previous HWP experiments
* Current experience: HWP modulation is better at rejecting atmospheric fluctuations
* Possible reasons:
* Fordifferencing, a difference in bandpass shape for paired detectors will result in different gain for CMB and
atmosphere, the HWP modulation uses the same bandpass filter for both polarizations
« HWP modulation requires high gain stability due to HWP synchronous signal and differencing requires high
differential gain stability



Atmospheric Rejection in SO SAT Data
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Noise spectra from ~100 detectors with no additional filtering post-
demodulation. Spectrum is white until very low frequencies.
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Galaxy center maps in comparison to Planck demonstrate
instrument performance and larger scale recovery.
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ABS Spectra
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Figure 1. The normalized uncertainties on the C’f B power spec-
trum achieved by QUIET (QUIET Collaboration 2011, 2012), BI-
CEP2 and Keck Array (BICEP2 and Keck Array Collaborations
2016), and ABS (Kusaka et al. 2018). The yellow data points are
AC’fB/\/Z/ [(2¢ + 1)Af] < NPB; the blue points have the beam
divided out and are normahzeé to unity at high £. Solid lines show
the modeled curves with Eq. 1. Dashed horizontal lines indicate
the location of £y . and are at £ = 50 or below.
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Figure 8: Systematic unceratinty estimates for the BB power spectrum. Within each cate-
gory, the errors are added in quadrature since the estimates do not have a preferred direction
of bias. Except for instrumental polarization and the polarization angle, the estimates are
dominated by residual statistical fluctuations and are thus conservative upper limits. The
systematic uncertainties are well below the statistical uncertainty for ¢ < 150.



Studies on systematic errors due to HWP modulation
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Conclusions

* ABS and POLARBEAR

* Show strong rejection of atmospheric fluctuations
* Full set of null tests and estimates of systematic errors

* Simons Observatory
* Two 90/150 GHz SATs currently observing
* Preliminary analyses are encouraging

* Timescale is one to few years for data that is useful for CMB-S4 design
process



