SAT and LAT Designs and Considerations

John Ruhl (he/him)

Case Western Reserve University

SAT design and considerations

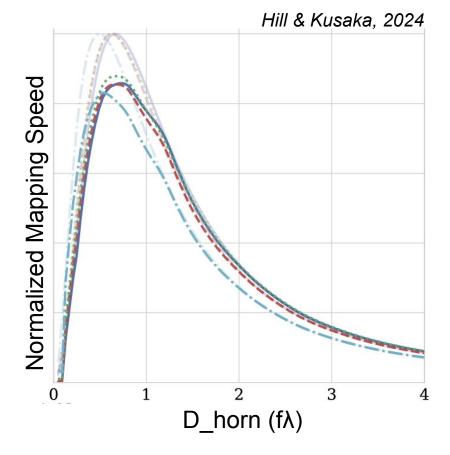
Goals:

- ~ double white-noise mapping speed per tube (relative to 2022 AoA Alt3 "scaled optics" SAT design), in order to make the number of tubes required, and the operation time, reasonable.
- keep atmosphere from spoiling P noise at relevant scales
- prevent systematics from corrupting data, or overly reducing good data fraction/sensitivity

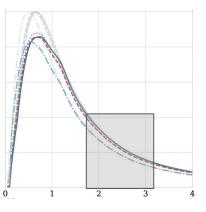
Increasing white noise mapping speed => smaller horns

- side effects include:
 - More spillover on cold aperture stop, need to control that power
 - larger edge taper on cold aperture stop, need to control that power
 - more detectors == more readout (heat+complexity+cost)
 - less optical efficiency => lower Psat detectors, lower NEPs

Beating the atmosphere => polarization modulation (eg HWP=Halfwave Plate)

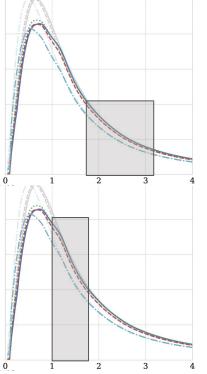

- side effects include:
 - new systematics to consider
 - perhaps some improvements in old systematics

Beating systematics => ?


• Need to think anew about shielding, sun/moon avoidance, thermal variations, time constants/etc...

Increasing white noise mapping speed =>

smaller horns



Increasing white noise mapping speed => smaller horns

	LF		MF1		MF2		HF	
Band center (GHz)	24.75	36.5	85	145	95	155	227	285.5
Lambda_center (mm)	12.1	8.2	3.5	2.1	3.2	1.9	1.32	1.05
Old Design (2022 AoA)								
f-number	1.45							
Horn diameter (mm)	30.7	30.7	9.35	9.35	8.79	8.79	5.05	5.05
Horn diameter (f-lambda)	1.75	2.58	1.83	3.12	1.92	3.13	2.64	3.31
Cold stop efficiency	0.86	0.92	0.84	0.93	0.86	0.92	0.93	0.97

Increasing white noise mapping speed => smaller horns

	LF		MF1		MF2		HF	
Band center (GHz)	24.75	36.5	85	145	95	155	227	285.5
Lambda_center (mm)	12.1	8.2	3.5	2.1	3.2	1.9	1.32	1.05
Old Design (2022 AoA)								
f-number	1.45							
Horn diameter (mm)	30.7	30.7	9.35	9.35	8.79	8.79	5.05	5.05
Horn diameter (f-lambda)	1.75	2.58	1.83	3.12	1.92	3.13	2.64	3.31
Cold stop efficiency	0.86	0.92	0.84	0.93	0.86	0.92	0.93	0.97
"Max mapping speed"								
f-number	1.85							
Horn diameter (mm)	19.0	19.0	5.05	5.05	5.05	5.05	5.05	5.05
Horn diameter (f-lambda)	1.08	1.59	0.99	1.68	1.10	1.80	2.64	3.31
Cold stop efficiency	0.3	0.63	0.27	0.6	0.32	0.65	0.88	0.92

SAT design - "max mapping speed estimates"

2022 AoA had "scaled down optics tubes" with reduced FPU size; this put an additional penalty on detector count. Thus, here we see even greater mapping speed improvements than predicted from the previous plots.

	S4_max+HWP, Atacama, pwv = 993 u, elev = 50				
GHz		(max/scaled_optics) ms_ratio			
25	LF_1	1.37			
36	LF_2	5.12			
85	MF_1_1	2.06			
95	MF_2_1	2.07			
145	MF_1_2	3.86			
155	MF_2_2	3.51			
227	HF_1	1.64			
285	HF_2	1.61			

More details here:

<u>https://docs.google.com/spreadsheets/d/1IQkLHaHVXY3PYwOX8wwmGBYgh3uDkrNFeum5Wnx9UVg/edit?usp=sharing</u> 2024 July 31, CMB-S4 Collaboration meeting - UIUC

SAT design - implcations/side-effects of smaller horns

- Different relative mapping speeds in dichroic paired channels; how does this affect optimal tube distribution? Should we build some 150/220 tubes?
- Potential systematics:
 - LF/MF: More spillover on cold aperture stop, need to control that power
 - LF/MF: larger illumination of cold aperture stop rim, need to control that power
- Less optical efficiency in LF/MF =>
 - lower optical power => lower Psats and lower NEPs
- Closer packing of beams on sky => possibly more correlated atmosphere
- Higher channel count per wafer => more readout, more data volume

SAT design - other issues

1:30pm breakout tomorrow: "Chile SAT Design and Considerations" [Conveners: Kovac and McMahon]

Beating the atmosphere:

- How well do polarization modulators work?
 - [See upcoming talks by Adrian Lee and Yunyang Li]
- Do we know we need them?
- Polarized atmospheric noise ("Q noise")
 - [See the upcoming talk by Anna Coerver]

Beating systematics:

- HWP-induced systematics
- What beam/sidelobe systematics, if any, do they improve?
- ?

LAT designs and considerations

We have two LAT designs, and need at least 3 LATs.

We have two survey types: "wide Neff/legacy" and "deep for delensing".

Question: Should all LATs be of the same design, or are there significant benefits of bespoke designs for those surveys? *Per-detector mapping speeds are nearly identical.*

CD-LAT:

- 6m => better angular resolution, better for "wide/Neff"
- panel gaps => more sidelobe issues
- image quality => concentrate higher frequencies at center of FOV
- (quasi) boresight rotation

TMA-LAT:

- 5m, fine for delensing
- no panel gaps
- better image quality, no restrictions on where to put high frequency tubes
- (limited, true) boresight rotation