

Adri Duivenvoorden **Center for Computational Astrophysics**

> **CMB-S4 summer 2024 meeting** 07-31-2024

CONICYT

Gobierno de Chile

2007-2022

image credit: Mark Devlin

2022 collaboration meeting, Princeton

Altitude of 5200 m in the Atacama desert in northern Chile

Access to ~70% of the sky (ACT maps ~40%)

6 m telescope

~5 times Planck resolution

PI: Suzanne Staggs, Co-Director: Mark Devlin

image credit: Debra Kellner

DR6 LENSING RESULTS

Late time structure formation as measured by ACT CMB lensing agrees with extrapolation from early universe

Adriaan J. Duivenvoorden

Described in [Qu++, 2023], [Madhavacheril++, 2023] and [MacCrann++, 2023] ACT lensing papers. Maps and likelihood available on Lambda

More recently: [Farren++, 2023] (ACT x UNWISE): structure formation at $z \sim 0.6$ and $z \sim 1.1$ also agrees with early universe

ACT + PLANCK MAP OF THE THERMAL SUNYAEV ZEL'DOVICH EFFECT

- Combine the 90, 150

 and 220 GHz ACT
 bands with Planck
 NPIPE to form a map
 of the total thermal

 SZ signal
- A map of the integrated electron
 pressure in our
 universe

Coulton++, 2024 See also Hilton++, 2020 for cluster catalog

Adriaan J. Duivenvoorden

ACT + PLANCK MAP OF THE THERMAL SUNYAEV ZEL'DOVICH EFFECT

- High-res ACT data helps with foreground contamination
- Several "deprojection" options available that explicitly remove contamination
- Maps available on Lambda

PPadelland GHz

Compton-y

11

DR6 SECONDARIES II

Kinetic SZ effect starts to seriously constrain cosmology

First detection of patchy screening

Coulton++, 2024

DR6 – SMALL SCALE CMB

Power spectrum analysis Internal	20
null tests are passing. Final	18
analysis of the data in progress	16
	14
CIVIB power spectrum results	ຼ 12
then Planck	u d Z 10
	र्णे 8
Temperature-polarization	6
correlation (TE) becomes most	4
sensitive channel	2
	0

DR6 - SMALL SCALE CMB

- Addition of small scale and polarization data enables testing of a range of extensions to ΛCDM
 - 2x more sensitive to extra relativistic species (N_{eff})
 compared to *Planck* alone

Forecast

	DR4 + WMAP	Planck	DR6 + Planck
$\sigma(H_0)$	1.1	0.5	0.4
$\sigma(n_s)$	0.006	0.004	0.003
$\sigma(N_{\rm eff})$	0.3	0.2	0.1

DR6 – SMALL SCALE CMB

- Addition of small scale and polarization data enables testing of a range of extensions to ΛCDM
 - Early dark energy" (EDE) solution to the "Hubble tension"

See e.g. V. Poulin, T. L. Smith, T. Karwal and M. Kamionkowski Phys. Rev. Lett. 122 (2019) 221301

Adriaan J. Duivenvoorden

ACT DR4 TT+TE+EE +
$$\tau$$
 [EDE, $n = 3$]
ACT DR4 TT+TE+EE + Planck 2018 TT ($\ell_{max} = 650$) + τ [EDE
Planck 2018 TT+TE+EE [EDE, $n = 3$]

Forecast ACT DR6 TT+TE+EE + Planck 2018 TT ($\ell_{\text{max}} = 650$) + τ [EDE, n = 3]

Forecast by C. Hill

LESSONS LEARNED: MAXIMUM LIKELIHOOD MAPS

- ML maps, very expensive but (approximately) unbiased
 - Downsides: complicated noise properties and limited ability to produce time-ordered end-to-end simulations
- Atmosphere modeled as stationary in timedomain. Crucial to include correlations between detectors in noise model
 - Example of possible improvement from [Morris++, 2022]: take wind direction into account

one scans with or against the wind direction

LESSONS LEARNED: MODEL ERRORS

- As dynamic range in noise covariance increases, seemingly benign model errors start to cause large biases during mapmaking
 - Examples: pixelization and relative gain errors between the detectors
- For ACT, the lack of hardware calibrator leaves planet- or atmosphere-based gain calibration
 - Planet sensitive to per-detector beams
 - Atmosphere sensitive to passband differences between detectors
- Having overlapping angular scales with Planck is important. Accurate gain calibration should be very high priority for upcoming experiments

LESSONS LEARNED: NOISE SIMULATIONS

- would be)
- 2023] from model estimated directly from map differences
- Crucial for recent ACT CMB lensing results and other upcoming cosmological results

Time-domain noise simulations are too expensive for ACT (and unclear how accurate they

Developed wavelet-based method to efficiently draw accurate noise simulations [Atkins++,

LESSONS LEARNED: SPLIT-BASED ESTIMATORS

iadhavacherii, Smith

LESSONS LEARNED: BEAM LEAKAGE

- The uncertainty in the estimates of temperatureto-polarization leakage starts to dominate the error budged at large scales
- One should be very generous with scheduling planet observations (and again, detector gain calibration!)

LESSONS LEARNED: PASSBANDS

- Foreground modeling becomes sensitive to 1 GHz shifts in the central passbands
 - ▶ 1 GHz is comparable to the current systematic uncertainty
 - More accurate measurements of the passbands are vital to go beyond **ACT** sensitivity

Coulton++, 2024

CONCLUSION

- ACT DR6 is a quite dramatic improvement over ACT DR4
 - Power spectrum analysis in final stage. Many other analyses (updated lensing, bispectrum, cluster catalogs, cross-correlations) also in prep
 - We will release all of the DR6 maps
- Error budged starts to become systematics dominated, rethinking of calibration strategies will be vital for upcoming experiments
- We still have very sensitive 30 and 40 GHz data that has been mapped but not yet seriously analyzed

