

Updated Constraints on Hubble Tension solutions

With recent SPT-3G and SH0ES data

Ali Rida Khalife arXiv:2312.09814

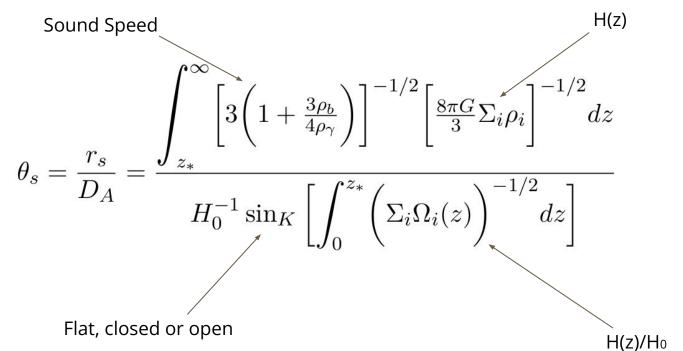
(accepted in **JCAP**)

Collaborators: Mariam Bahrami, Sven Günther and Julien Lesgourgues from **RWTH Aachen**Silvia Galli and Karim Benabed from **IAP**

Thanks to the great support from the IAP CMB team:

Federica Guidi, Aristide Doussot, Eric Hivon, Etienne Camphuis, Lennart Balkenhol and Aline Vitrier

Goal of the Project


- Evaluate the potential of Cosmological models to solve the Hubble Tension.
- Include primary CMB data from <u>SPT-3G 2018</u>, in combination with other data sets.
- Compare to recent <u>SH0ES analysis</u>:

 H_0 = 73.29±0.90 km/s/Mpc (Murakami *et al., 2023;* 2306.00070).

- Study 5 classical ΛCDM extensions + 3 Elaborate Models (+extensions).
- Assess these models with new Tension metrics.
- Update H₀ Olympics paper (Schöneberg et al., 2021; <u>2107.1029</u>).

How to Solve the Tension

- Solutions to the Hubble Tension include changing the Physics pre-recombination or in the late universe
- Note: $100x\theta = 1.04075 \pm 0.00028$ (Balkenhol *et al.*,2022; <u>2212.05642</u>)

CMB

SPT-3G 2018:

TT TF FF

- 300≨{\$3000 (~3%)
- ~1.4' resolution.
- ~15 μK-arcmin sensitivity. (Balkenhol et al.,2022; 2212.05642

Dutcher et al., 2021; 2101.01684)

<u>Planck PR3:</u>

ΤΤ ΤΕ ΕΕ ΦΦ

- {\$2500 (~full sky)
- ~7' resolution.
- ~40 μK-arcmin sensitivity. (Planck results I, 2018; <u>1807.06205</u>)

ACT DR4:

TT TE EE

- 325≲ℓ≲7550 (~44%)
- ~1.3' resolution.
- ~10 μK-arcmin sensitivity. (Aiola *et al.*, 2020; <u>2007.07288</u> Choi *et al.* 2021; <u>2007.07289</u>)

CMB

<u>SPT-3G 2018:</u>

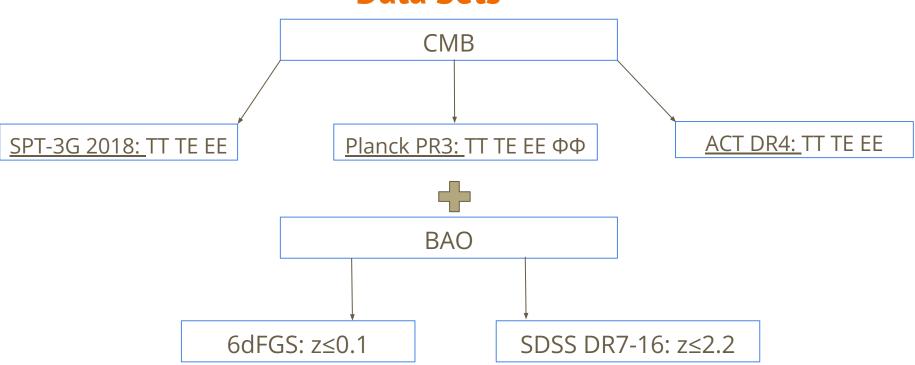
TT TE EE

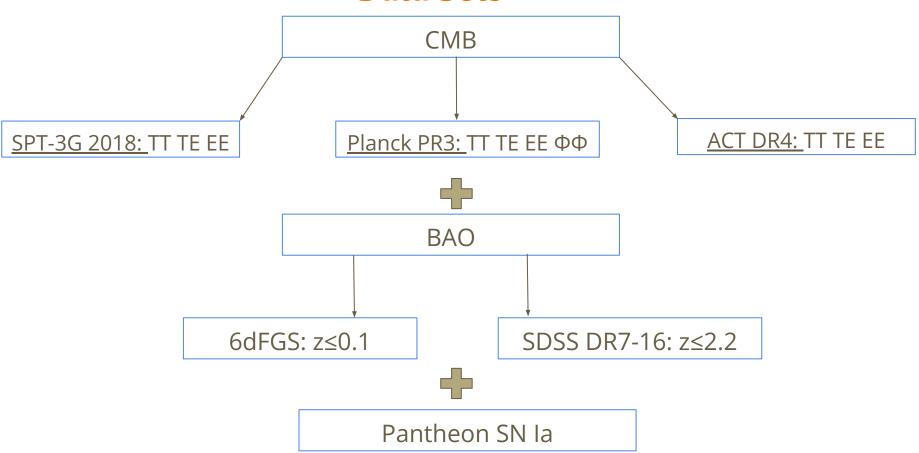
- 300≲ℓ≲3000 (~3%)
- ~1.4' resolution.
- ~15 μK-arcmin sensitivity. (Balkenhol et al.,2022; 2212.05642

Dutcher et al., 2021; 2101.01684)

Planck PR3:

ТТ ТЕ ЕЕ ФФ


- £≲2500 (~full sky)
- ~7' resolution.
- ~40 μK-arcmin sensitivity. (Planck results I, 2018; <u>1807.06205</u>)


ACT DR4:

TT TE EE

- 325≨ℓ≨7550 (~44%)
- ~1.3' resolution.
- ~10 μK-arcmin sensitivity. (Aiola *et al.*, 2020; <u>2007.07288</u> Choi *et al.* 2021; <u>2007.07289</u>)

CMB-S4: the Best of Both Worlds 20≲ℓ≲5000 (~60%); ~ 1' resolution; ~1 µK-arcmin sensitivity (CMB-S4 Science book, 1st edition; 1610.02743)

Extending Λ CDM with 3 degenerate **massive neutrinos** (Σm_{ν}) and:

Small scale CMB+BAO

• Chevallier-Polarski-Linder (CPL) Dark Energy ($\omega(a) = \omega_0 + \omega_a(1-a)$); $a \equiv \text{scale factor}$

• Spatial Curvature ($\Omega_{\rm K}$)

- Free streaming Dark Radiation (N_{eff})
- Self Interacting Dark Radiation (N_{SIDR})

Extending Λ CDM with 3 degenerate **massive neutrinos** (Σm_v) and:

• Chevallier-Polarski-Linder (CPL) Dark Energy ($\omega(a) = \omega_0 + \omega_a(1-a)$); $a \equiv \text{scale factor}$

• Spatial Curvature (Ω_{κ})

Large scale CMB + SN Ia

- Free streaming Dark Radiation (N_{eff})
- Self Interacting Dark Radiation (N_{SIDR})

Extending Λ CDM with 3 degenerate **massive neutrinos** (Σm_v) and:

• Chevallier-Polarski-Linder (CPL) Dark Energy ($\omega(a) = \omega_0 + \omega_a(1-a)$); $a \equiv \text{scale factor}$

• Spatial Curvature ($\Omega_{\rm K}$) CMB + BAO

- Free streaming Dark Radiation (N_{eff})
- Self Interacting Dark Radiation (N_{SIDR})

Extending Λ CDM with 3 degenerate **massive neutrinos** (Σm_v) and:

• Chevallier-Polarski-Linder (CPL) Dark Energy ($\omega(a) = \omega_0 + \omega_a(1-a)$); $a \equiv \text{scale factor}$

- Spatial Curvature (Ω_{κ})
- Free streaming Dark Radiation (N_{eff})
- Self Interacting Dark Radiation (N_{SIDR})

Small scale CMB

Extending Λ CDM with 3 degenerate **massive neutrinos** (Σm_v) and:

• Chevallier-Polarski-Linder (CPL) Dark Energy ($\omega(a) = \omega_0 + \omega_a(1-a)$); $a \equiv \text{scale factor}$

• Spatial Curvature (Ω_{κ})

Model	$\Delta N_{ m param}$	M_B	Gaussian tension	Q _{DMAP} tension		$\Delta \chi^2$	∆AIC	Finalist	
SIDR	1	-19.385 ± 0.024	3.2σ	3.3σ	X	-9.57	-7.57	✓ (✓ (

Self Interacting Dark Radiation (N_{SIDR})

(Schöneberg et al., 2021; <u>2107.1029</u>)

Varying electron mass: (Hart & Chulba, 2017; <u>1705.03925</u>)

- Changes the time (redshift) of hydrogen recombination.
- Previously found to be an excellent reducer of the tension.
- Must include BAO with large-scale CMB data.

Model	$\Delta N_{\mathrm{param}}$	M_B	Gaussian tension	Q _{DMAP} tension		$\Delta \chi^2$	∆AIC		Finalist
varying m_e	1	-19.391 ± 0.034	2.9σ	2.9σ	✓	-12.27	-10.27	√	()

(Schöneberg et al., 2021; 2107.1029)

- Varying electron mass: (Hart & Chulba, 2017; <u>1705.03925</u>)
 - \bullet + Σm_v : First to constrain this combination.

Varying electron mass: (Hart & Chulba, 2017; <u>1705.03925</u>)

$$= +\Sigma m_v$$

- +Ω_K
 - Even more promising than its ancestor.
 - Intermediate scale polarization data from SPT-3G was crucial

Model	$\Delta N_{\mathrm{param}}$	M_B	Gaussian tension	Q _{DMAP} tension		$\Delta \chi^2$	∆AIC	Finalist	
varying $m_e + \Omega_k$	2	-19.368 ± 0.048	2.0σ	1.9σ	√	-17.26	-13.26	V (V (0)	

(Schöneberg et al., 2021; <u>2107.1029</u>)

- Varying electron mass: (Hart & Chulba, 2017; <u>1705.03925</u>)
 - $+\Sigma m_{\nu}$
 - +Ω_κ
 - $+\Sigma m_v + \Omega_K$

• Varying electron mass: (Hart & Chulba, 2017; <u>1705.03925</u>)

$$= +\Sigma m_{v}$$

$$+\Sigma m_v + \Omega_K$$

- Early Dark Energy: (Poulin et al., 2023; 2302.09032)
 - Scalar field reduces sound horizon around Matter-radiation equality.

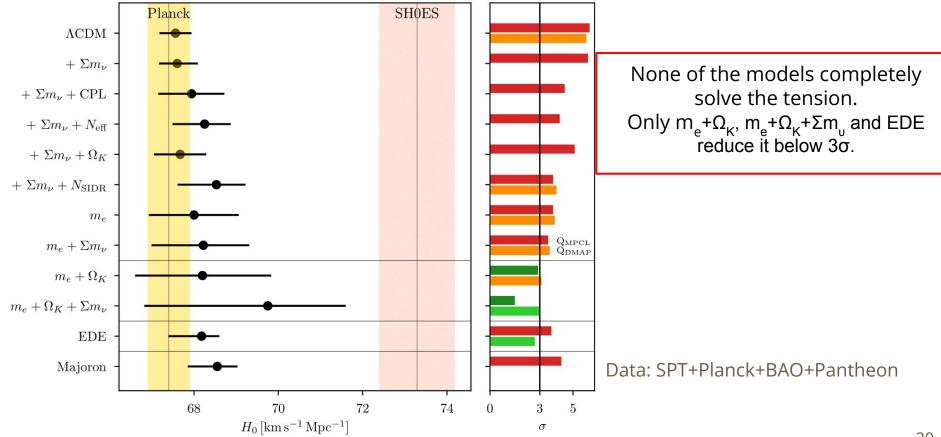
Model	$\Delta N_{\mathrm{param}}$	M_B	Gaussian tension	Q _{DMAP} tension		$\Delta \chi^2$	∆AIC		Finalist
EDE	3	$-19.390^{+0.016}_{-0.035}$	3.6σ	1.6σ	✓	-21.98	-15.98	√	(((((((((((((((((((

(Schöneberg et al., 2021; <u>2107.1029</u>)

• Varying electron mass: (Hart & Chulba, 2017; <u>1705.03925</u>)

$$\blacksquare$$
 + $\Sigma m_v + \Omega_K$

- Early Dark Energy: (Poulin et al., 2023; 2302.09032)
 - Scalar field reduces sound horizon around Matter-radiation equality.
- The Majoron: (Escudero & Witte, 2021; 2103.03249)
 - Breaking symmetry in the early Universe produces interacting Dark Radiation.


Model	$\Delta N_{\rm param}$	M_B	Gaussian tension	Q _{DMAP} tension		$\Delta \chi^2$	ΔAIC		Finalist
Majoron*	3	$-19.380^{+0.027}_{-0.021}$	3.0σ	2.9σ	√	-10.99	-4.99	X	(O

(Schöneberg et al., 2021; <u>2107.1029</u>)

Tension Metrics

- Marginalised Posterior Compatibility Level (Q_{MPCI}):
 - Generalises Gaussian Tension metric to non-Gaussian posteriors of H₀.
 - Bayesian.
- Difference of the Maximum A Posteriori (Q_{DMAP}):
 - Comparison of best-fit χ^2 for a model and data set, w/ and w/o SH0ES.
 - Frequentist.
- Akaike Information Criterion (ΔΑΙC):
 - \circ Comparison of best-fit χ^2 for a model, given a data set that includes SH0ES, with that of Λ CDM
 - o Penalty for models with additional parameters.
- ΔAIC without SH0ES

Main Results

Main Results

	w/o	SH0ES	w/S	H0ES	
Models	$\Delta\chi^2$	$\Delta { m AIC}$	$\Delta\chi^2$	$\Delta { m AIC}$	
$\Lambda \mathrm{CDM}$	0	0	0	0	
$+\Sigma m_{\nu}$	_	-		-	
$+\Sigma m_{\nu} + \text{CPL}$	_	_	_	_	
$+\Sigma m_{\nu} + N_{\rm eff}$	_	_		_	
$+\Sigma m_{\nu}+\Omega_{K}$	_	_	<u>==</u>		
$+\Sigma m_{\nu} + N_{\mathrm{SIDR}}$	-0.1	3.9	-17.1	-13.1	
m_e	0.0	2.0	-18.0	-16.0	
$m_e + \Sigma m_{\nu}$	-0.9	3.1	-21.6	-17.6	
$m_e + \Omega_K$	-1.0	3.0	-24.7	-20.7	
$m_e + \Omega_K + \Sigma m_{\scriptscriptstyle \parallel}$	-0.9	5.1	-25.8	-19.8	
EDE	-4.6	1.4	-31.1	-25.1	
Majoron		_	-		

Without SH0ES, the models are not performing appreciably better than ΛCDM.

Summary

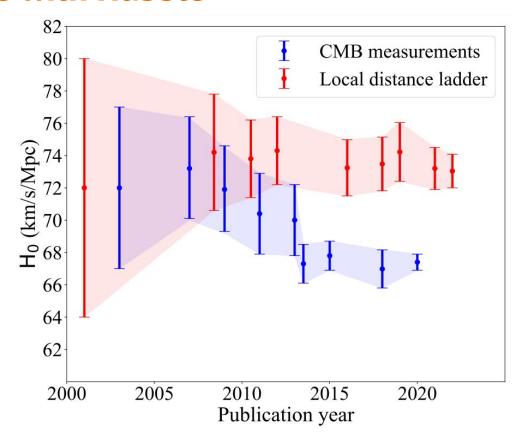
- Update previous constraints on Hubble Tension solutions with:
 SPT-3G 2018, SH0ES and SDSS DR16.
- Introduced new tension metrics that improve the assessment.
- We used a Boltzmann code emulator, making the computations faster.
- SIDR, varying m_e and the Majoron models are no longer possible solutions to the Hubble Tension.
- None of the studied models actually solve the tension.

Future Plans

• Further investigation of the still viable models is needed.

 Revisit these models, along with others, with upcoming SPT-3G 2019/2020 and ACT DR6 data.

CMB-S4's improved sky coverage and polarization data will be crucial.

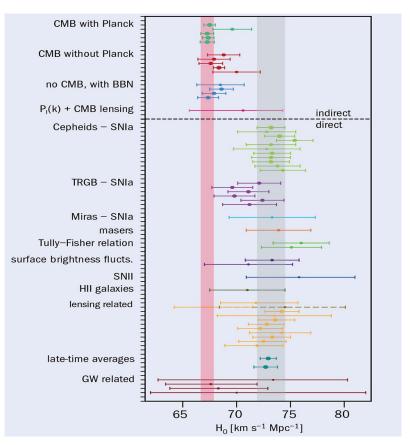

Perform forecasts for CMB-S4.

Thank you!

Questions? Comments?

Back Up

The Trouble with Hubble



Ref: Hubble Tension: The Evidence of New Physics(2302.05709)

Data Sets and Numerical Tools

- Data sets:
 - SPT-3G 2018: TT,TE,EE
 - Planck 2018: TT,TE,EE+Lensing
 - o BAO: 6dFGS+SDSS MGS, DR12-16
 - o ACT: DR4
 - Pantheon SN Ia
- Theory Codes: <u>CLASS</u>, <u>AxiCLASS</u> and <u>CAMB</u>
- Monte Carlo Sampler: <u>COBAYA</u>
- Minimizing χ²: <u>Py-BOBYQA</u>
- New cosmological emulator (<u>2307.01138</u>)
- Our reference data set: SPT+Planck+BAO+Pantheon (SPBP)

The Trouble with Hubble

Ref: In the Realm of the Hubble Tension (2103.01183)

Varying electron mass:

Compactification in higher dimensional theories results in scalar fields that alter the effective mass of elementary particles, specifically electrons.

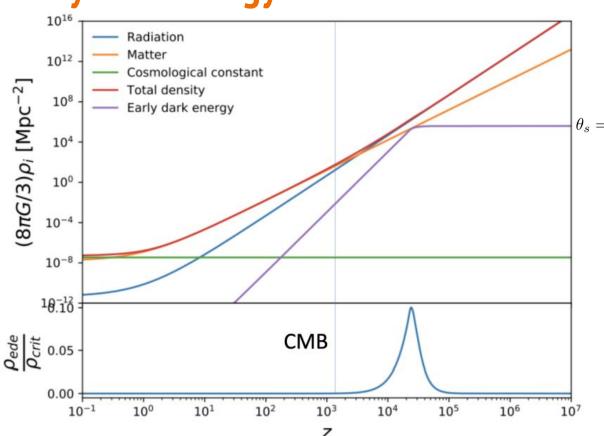
Recombination rate is affected Recombination time changes

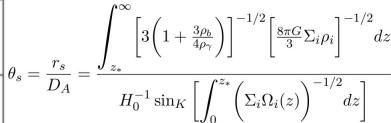
Additional parameter: m_{e,early}/m_{e,late}

More details: Hart & Chulba, 2018(1705.03925); Planck 2015(1406.7482)

$$\theta_s = \frac{r_s}{D_A} = \frac{\int_{z_*}^{\infty} \left[3\left(1 + \frac{3\rho_b}{4\rho_\gamma}\right) \right]^{-1/2} \left[\frac{8\pi G}{3} \Sigma_i \rho_i \right]^{-1/2} dz}{H_0^{-1} \sin_K \left[\int_0^{z_*} \left(\Sigma_i \Omega_i(z) \right)^{-1/2} dz \right]}$$

- Varying electron mass $(m_{e,early}/m_{e,late})$
 - + Σm_{ν} : Study interplay between masses of the two species


• Varying electron mass $(m_{e,early}/m_{e,late})$


 \circ + Ω_{κ} : Changing the time of recombination changes the distance

$$\theta_s = \frac{r_s}{D_A} = \frac{\int_{z_*}^{\infty} \left[3\left(1 + \frac{3\rho_b}{4\rho_\gamma}\right) \right]^{-1/2} \left[\frac{8\pi G}{3} \Sigma_i \rho_i \right]^{-1/2} dz}{H_0^{-1} \sin_K \left[\int_0^{z_*} \left(\Sigma_i \Omega_i(z) \right)^{-1/2} dz \right]}$$

More details: Sekigushi & Takahashi (2020) (2007.03381)

Early Dark Energy

Kamionkowski & Riess, 2022 (2211.04492)

Early Dark Energy

- Also motivated by higher dimensional theories.
- A scalar field contributes briefly to the expansion rate around matter-radiation equality.
- Decrease in sound horizon, compensated by increase in H_0 .
- References: Poulin et al., 2018 (<u>1811.04083</u>), Smith & Poulin, 2023 (<u>2309.03265</u>)

- Varying electron mass $(m_{e,early}/m_{e,late})$
 - ∘ +**Σm**_ν

 - \circ + Σm_{V} + Ω_{K}

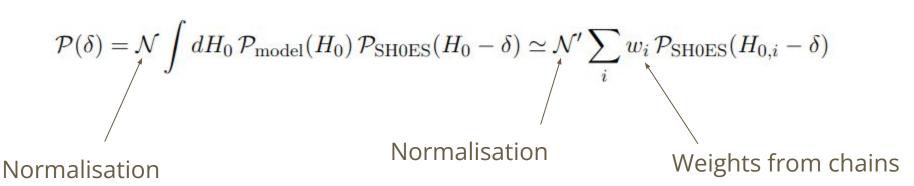
• Early Dark Energy:

- \circ Θ_i : Initial value of the scalar field
- \circ Z_c : Critical redshift, i.e. the field becomes dynamical
- \circ $f_{\text{EDE}} = \rho_{\text{EDE}}/\rho_{\text{tot}}$

• Varying electron mass $(m_{e,early}/m_{e,late})$

- ∘ **+Σm**_ν
- +Ω_κ
- \circ + Σm_{v} + Ω_{K}
- Early Dark Energy ($\theta_{i'}$, $Z_{c'}$, f_{EDE})
- The Majoron:

Breaking lepton number symmetry produces a pseudo-scalar (φ) that gives neutrinos


their mass (like the Higgs). A particle Physics motivated SIDR.

Free parameters: m_{ϕ} , $\Gamma_{\rm eff}$ and $N_{\rm DR}$

More details: <u>Escudero & Witte, 2020</u> (1909.04044); <u>Escudero & Witte, 2021</u> (2103.03249)

Tension Metrics

• Marginalised Posterior Compatibility Level (MPCL): What's the probability of getting 0 in the distribution of the difference between SH0ES and a model's H_0 posteriors?

• Marginalised Posterior Compatibility Level (MPCL): What's the probability of getting 0 in the distribution of the difference between SH0ES and a model's H_0 posteriors?

$$\mathcal{P}(\delta) = \mathcal{N} \int dH_0 \, \mathcal{P}_{\text{model}}(H_0) \, \mathcal{P}_{\text{SH0ES}}(H_0 - \delta) \simeq \mathcal{N}' \sum_i w_i \, \mathcal{P}_{\text{SH0ES}}(H_{0,i} - \delta)$$

$$q = \int_0^{\delta'} d\delta \, \mathcal{P}(\delta)$$
. Probability of finding δ in $[0, \delta']$, such that $\mathcal{P}(\delta') = \mathcal{P}(0)$

• Marginalised Posterior Compatibility Level (MPCL): What's the probability of getting 0 in the distribution of the difference between SH0ES and a model's H_0 posteriors?

$$\mathcal{P}(\delta) = \mathcal{N} \int dH_0 \, \mathcal{P}_{\text{model}}(H_0) \, \mathcal{P}_{\text{SH0ES}}(H_0 - \delta) \simeq \mathcal{N}' \sum_i w_i \, \mathcal{P}_{\text{SH0ES}}(H_{0,i} - \delta)$$

$$q = \int_0^{\delta'} d\delta \, \mathcal{P}(\delta)$$
. Probability of finding δ in $[0, \delta']$, such that $\mathcal{P}(\delta') = \mathcal{P}(0)$

$$n = \sqrt{2} \operatorname{erf}^{-1}(q)$$
 Tension in units of σ , denoted by Q_{MPCL}

• Marginalised Posterior Compatibility Level (MPCL): What's the probability of getting 0 in the distribution of the difference between SH0ES and a model's H_0 posteriors?

$$\mathcal{P}(\delta) = \mathcal{N} \int dH_0 \, \mathcal{P}_{\text{model}}(H_0) \, \mathcal{P}_{\text{SH0ES}}(H_0 - \delta) \simeq \mathcal{N}' \sum_i w_i \, \mathcal{P}_{\text{SH0ES}}(H_{0,i} - \delta)$$

$$q = \int_0^{\delta'} d\delta \, \mathcal{P}(\delta) \; .$$

Probability of finding δ in $[0,\delta']$, such that $P(\delta') = P(0)$

$$n = \sqrt{2}\operatorname{erf}^{-1}(q)$$

Assuming Gaussian posteriors

$$n = \frac{\bar{x}_2 - \bar{x}_1}{\sqrt{\sigma_{x_1}^2 + \sigma_{x_2}^2}}$$

• Marginalised Posterior Compatibility Level (MPCL): What's the probability of getting 0 in the distribution of the difference between SH0ES and a model's H_0 posteriors?

$$\mathcal{P}(\delta) = \mathcal{N} \int dH_0 \, \mathcal{P}_{\text{model}}(H_0) \, \mathcal{P}_{\text{SH0ES}}(H_0 - \delta) \simeq \mathcal{N}' \sum_i w_i \, \mathcal{P}_{\text{SH0ES}}(H_{0,i} - \delta)$$

$$q = \int_0^{\delta'} d\delta \, \mathcal{P}(\delta) \; .$$

Probability of finding δ in $[0,\delta']$, such that $P(\delta') = P(0)$

$$n = \sqrt{2}\operatorname{erf}^{-1}(q)$$

Assuming Gaussian posteriors

ors
$$n = \frac{\bar{x}_2 - \bar{x}_1}{\sqrt{\sigma_{x_1}^2 + \sigma_{x_2}^2}}$$

Ref: Doux & Raveri, 2021 (2105.03324); Leizerovich, Landau & Scóccola, 2023 (2312.08542)

Marginalised Posterior Compatibility Level (MPCL):

$$n=\sqrt{2}\,\mathrm{erf}^{-1}(q)$$
 Tension in units of σ , denoted by Q_{MPCL}

• Difference of the Maximum A Posteriori (DMAP):

$$Q_{\mathrm{DMAP,\;model}} \equiv \sqrt{\chi^2_{\mathrm{min,\;model},\;\mathcal{D}+SH0ES} - \chi^2_{\mathrm{min,\;model},\;\mathcal{D}}}$$
; $\chi^2 = -2\ln\mathcal{L}$; $\mathcal{D} \equiv \mathrm{data\;set}$

Marginalised Posterior Compatibility Level (MPCL):

$$n=\sqrt{2}\,\mathrm{erf}^{-1}(q)$$
 Tension in units of σ , denoted by Q_{MPCL}

• Difference of the Maximum A Posteriori (DMAP):

$$Q_{\mathrm{DMAP,\ model}} \equiv \sqrt{\chi^2_{\mathrm{min,\ model},\ \mathcal{D}+SH0ES} - \chi^2_{\mathrm{min,\ model},\ \mathcal{D}}}$$
; $\chi^2 = -2\ln\mathcal{L}$; $\mathcal{D} \equiv \mathrm{data\ set}$

Akaike Information Criterion (AIC):

$$\Delta {\rm AIC_{model}} \ = \chi^2_{\rm min, \ model, \ \mathcal{D}+SH0ES} - \chi^2_{\rm min, \ \Lambda CDM, \mathcal{D}+SH0ES} \quad \text{; } \mathcal{N} \equiv \# \text{ of parameters} \\ + 2 \big(N_{\rm model} - N_{\Lambda {\rm CDM}} \big) \ .$$

Marginalised Posterior Compatibility Level (MPCL):

$$n=\sqrt{2}\,\mathrm{erf}^{-1}(q)$$
 Tension in units of σ , denoted by Q_{MPCL}

• Difference of the Maximum A Posteriori (DMAP):

$$Q_{\mathrm{DMAP,\ model}} \equiv \sqrt{\chi^2_{\mathrm{min,\ model},\ \mathcal{D}+SH0ES} - \chi^2_{\mathrm{min,\ model},\ \mathcal{D}}}$$
; $\chi^2 = -2\ln\mathcal{L}$; $\mathcal{D} \equiv \mathrm{data\ set}$

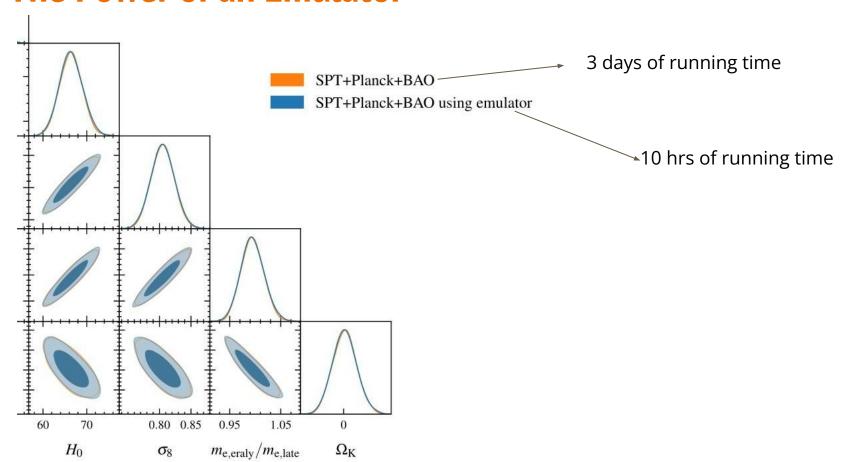
• Akaike Information Criterion (AIC):

$$\Delta {
m AIC_{model}} = \chi^2_{
m min, \ model, \ \mathcal{D}+SH0ES} - \chi^2_{
m min, \ \Lambda CDM, \mathcal{D}+SH0ES}$$
; $\mathcal{N} \equiv \#$ of parameters $+2 \left(N_{
m model} - N_{\Lambda {
m CDM}}\right)$.

AIC without SH0ES

Results

Further Results


Main Results

				w/o	SH0ES	w/S	H0ES
Models	$H_0({ m km/s/Mpc})$	$\mathrm{Q}_{\mathrm{MPCL}}(\sigma)$	$Q_{DMAP}(\sigma)$	$\Delta\chi^2$	$\Delta { m AIC}$	$\Delta \chi^2$	$\Delta { m AIC}$
$\Lambda \mathrm{CDM}$	$67.56(67.58)_{-0.38}^{+0.38}$	6.0	5.8	0	0	0	0
$+\Sigma m_{\nu}$	$67.60(67.01)^{+0.49}_{-0.43}$	5.9	i —	_	-	(0-0)	-
$+\Sigma m_{\nu} + \text{CPL}$	$67.94(67.89)^{+0.78}_{-0.79}$	4.5	_	_	_	_	_
$+\Sigma m_{\nu} + N_{\rm eff}$	$68.25(67.45)^{+0.62}_{-0.76}$	4.2	_	_			_
$+\Sigma m_{\nu}+\Omega_{K}$	$67.67(66.88)^{+0.62}_{-0.62}$	5.1	_	_		12000000	_
$+\Sigma m_{\nu} + N_{\mathrm{SIDR}}$	$68.53(69.06)^{+0.69}_{-0.92}$	3.8	4.0	-0.1	3.9	-17.1	-13.1
m_e	$68.00(68.03)^{+1.06}_{-1.07}$	3.8	3.9	0.0	2.0	-18.0	-16.0
$m_e{+}\Sigma m_{ u}$	$68.22(67.70)^{+1.09}_{-1.23}$	3.5	3.6	-0.9	3.1	-21.6	-17.6
$m_e + \Omega_K$	$68.20(67.42)_{-1.60}^{+1.63}$	2.9	3.1	-1.0	3.0	-24.7	-20.7
$m_e + \Omega_K + \Sigma m_{\nu}$	$69.75(67.75)^{+1.85}_{-2.93}$	1.5	3.0	-0.9	5.1	-25.8	-19.8
EDE	$68.18(68.55)_{-0.79}^{+0.42}$	3.8	2.7	-4.6	1.4	-31.1	-25.1
Majoron	$68.55(68.08)^{+0.48}_{-0.70}$	4.3	-		_	_) ,

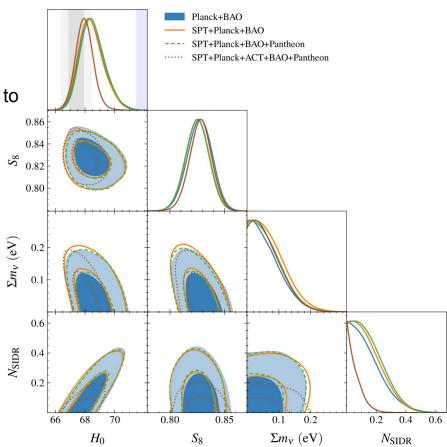
Compare with Olympics Paper

Model	$\Delta N_{ m param}$	M_B	Gaussian Tension	$Q_{ m DMAP}$ Tension	Y	$\Delta \chi^2$	$\Delta { m AIC}$		Finalist
$\Lambda \mathrm{CDM}$	0	-19.416 ± 0.012	4.4σ	4.5σ	X	0.00	0.00	X	X
$\Delta N_{ m ur}$	1	-19.395 ± 0.019	3.6σ	3.8σ	X	-6.10	-4.10	X	X
SIDR	1	-19.385 ± 0.024	3.2σ	3.3σ	X	-9.57	-7.57	√	√ ③
mixed DR	2	-19.413 ± 0.036	3.3σ	3.4σ	X	-8.83	-4.83	X	X
DR-DM	2	-19.388 ± 0.026	3.2σ	3.1σ	X	-8.92	-4.92	X	X
$SI\nu+DR$	3	$-19.440^{+0.037}_{-0.039}$	3.8σ	3.9σ	X	-4.98	1.02	X	X
Majoron	3	$-19.380^{+0.027}_{-0.021}$	3.0σ	2.9σ	1	-15.49	-9.49	1	✓ ②
primordial B	1	$-19.390^{+0.018}_{-0.024}$	3.5σ	3.5σ	X	-11.42	-9.42	V	√ ③
varying m_e	1	-19.391 ± 0.034	2.9σ	2.9σ	1	-12.27	-10.27	1	✓ •
varying $m_e + \Omega_k$	2	-19.368 ± 0.048	2.0σ	1.9σ	V	-17.26	-13.26	1	√ ●
EDE	3	$-19.390^{+0.016}_{-0.035}$	3.6σ	1.6σ	~	-21.98	-15.98	1	✓ ②
NEDE	3	$-19.380^{+0.023}_{-0.040}$	3.1σ	1.9σ	V	-18.93	-12.93	V	√ ②
EMG	3	$-19.397^{+0.017}_{-0.023}$	3.7σ	2.3σ	1	-18.56	-12.56	1	✓ ②
CPL	2	-19.400 ± 0.020	3.7σ	4.1σ	X	-4.94	-0.94	X	X
PEDE	0	-19.349 ± 0.013	2.7σ	2.8σ	/	2.24	2.24	X	X
GPEDE	1	-19.400 ± 0.022	3.6σ	4.6σ	X	-0.45	1.55	X	X
$\mathrm{DM} \to \mathrm{DR} {+} \mathrm{WDM}$	2	-19.420 ± 0.012	4.5σ	4.5σ	X	-0.19	3.81	X	X
$\mathrm{DM} \to \mathrm{DR}$	2	-19.410 ± 0.011	4.3σ	4.5σ	X	-0.53	3.47	X	X

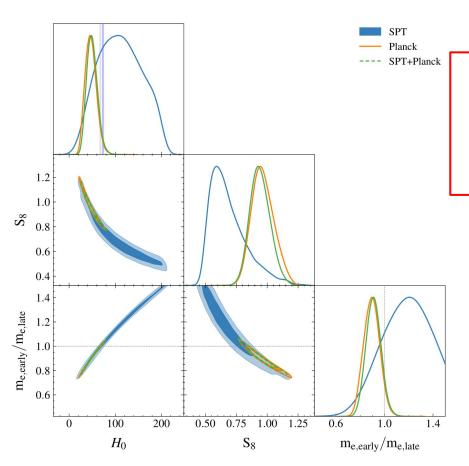
The Power of an Emulator

Q_{MPCL} for Each Model and Data-set

	05	DS	D58	$\mathcal{Q}_{\delta_{\varphi}}$	Degro	Desper	DSPAD	DSPARK
ΛCDM	2.7σ	6.0σ	5.4σ	5.9σ	6.3σ	6.0σ	6.3σ	6.1σ
$+ \Sigma m_{ u}$	3.4σ	5.4σ	5.6σ	5.7σ	6.0σ	5.9σ	5.9σ	5.9σ
$+ \Sigma m_{\nu} + CPL$	0.5σ	0.0σ	3.3σ	3.1σ	3.2σ	4.5σ	4.1σ	4.5σ
$+~\Sigma m_ u + N_{ ext{eff}}$	1.4σ	4.0σ	1.3σ	4.0σ	4.3σ	4.2σ	5.0σ	5.1σ
$+ \Sigma m_{\nu} + \Omega_{K}$		4.0σ	5.2σ	5.2σ	5.2σ	5.1σ	5.3σ	5.3σ
$+ \ \Sigma m_ u + N_{\sf SIDR}$	1.7σ	3.0σ	1.8σ	3.7σ	3.9σ	3.8σ	4.8σ	4.7σ
m_e	-0.1σ	1.4σ	3.3σ	3.8σ	3.9σ	3.8σ	3.8σ	3.8σ
$m_e + \Sigma m_ u$	0.0σ	1.9σ	0.4σ	3.5σ	3.4σ	3.5σ	3.7σ	3.7σ
$m_{ m e}+\Omega_{ m K}$	-0.7σ	1.8σ	3.3σ	1.9σ	2.8σ	2.9σ	2.8σ	2.8σ
$m_e + \Omega_K + \Sigma m_ u$			1.2σ	1.0σ	1.3σ	1.4σ	1.4σ	1.4σ
EDE	1.5σ	4.2σ	2.2σ	3.8σ	3.7σ	3.7σ	3.1σ	3.1σ
Majoron	-0.1σ	3.7σ	1.4σ	4.0σ	4.2σ	4.3σ	4.0σ	4.4σ

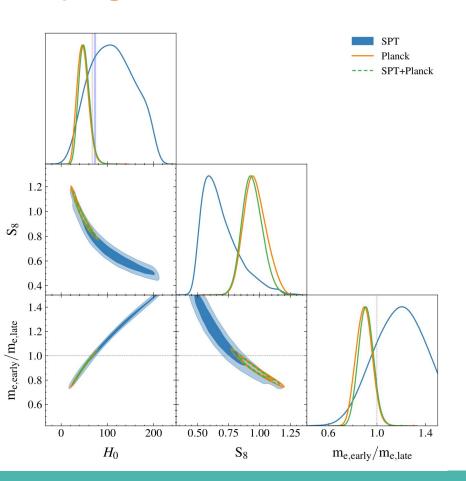

ACDM Extensions

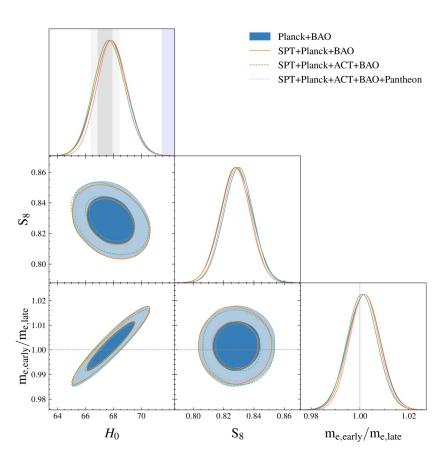
• $Q_{MPCI} \ge 3.1\sigma$ for all models with at least Planck+BAO.

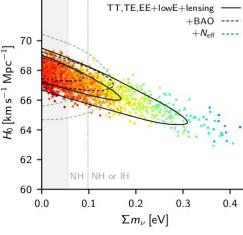

 SPT & ACT marginally increase the tension compared to Planck+BAO.

Expected degeneracies.

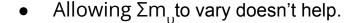
• ACT is slightly less compatible with larger N_{SIDR} .

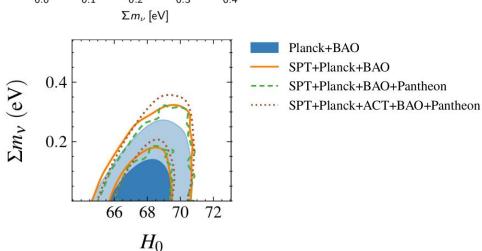


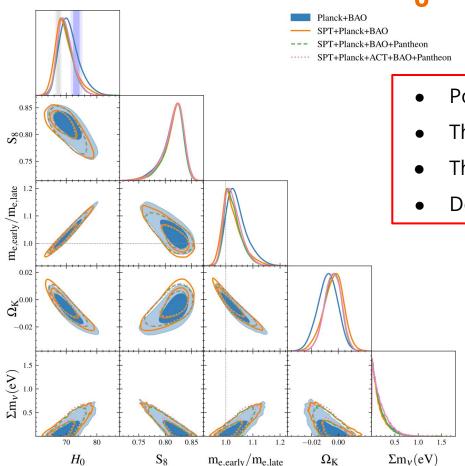

Varying Electron Mass

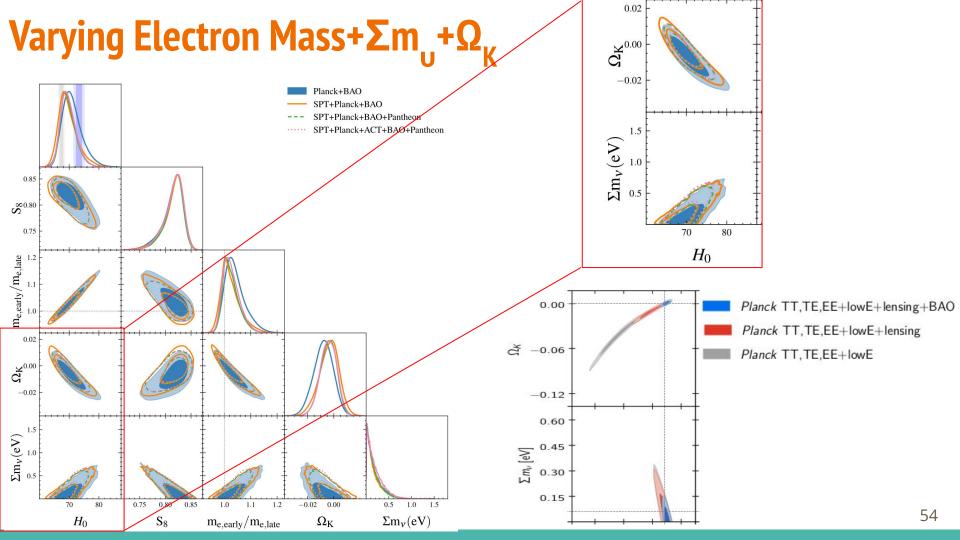

- No longer a potential solution to the tension.
- Planck is still more constraining than SPT.
- CMB alone cannot constrain this model.

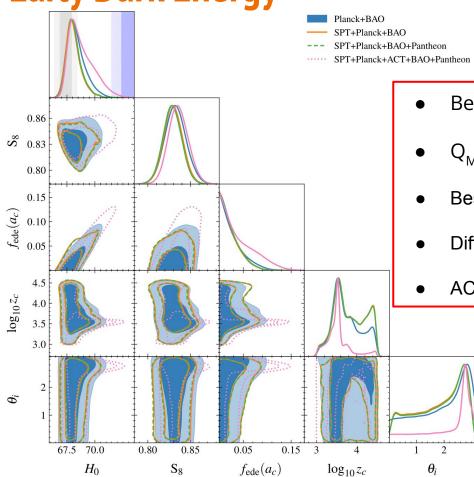
Varying Electron Mass



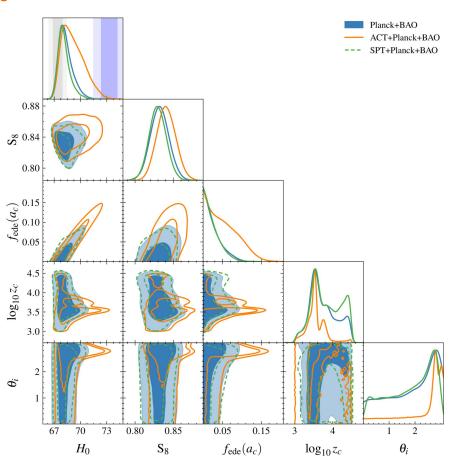

Varying Electron Mass+∑m_u


Planck 2018 (Aghanim et al.)

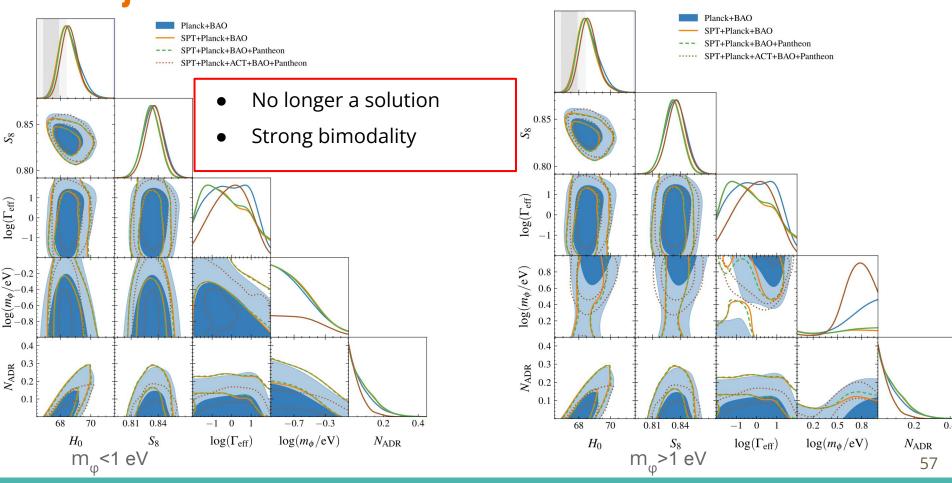

• Degeneracy direction in the Σm_{ij} - H_0 flips.


Varying Electron Mass+ $\Sigma m_U + \Omega_K$

- Polarization data from SPT is particularly useful.
- The model that reduces the tension the most.
- The model with the largest error bars.
- Degeneracy direction also flips in the Ω_{K} -H₀ plane.

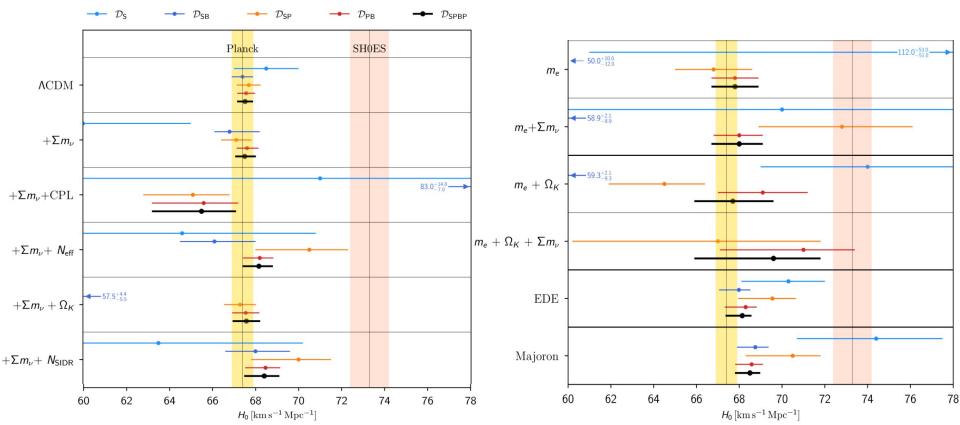


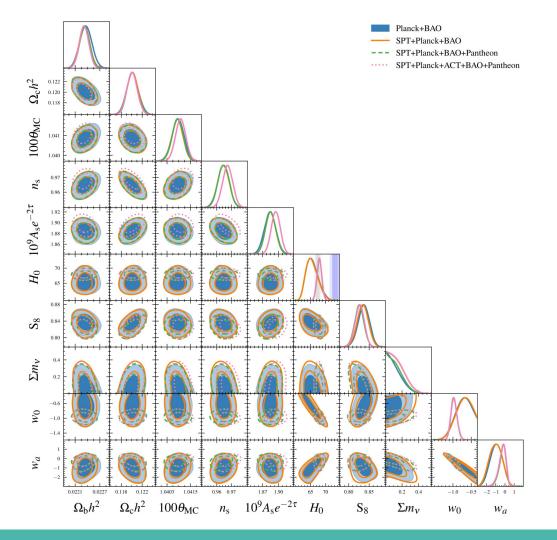
Early Dark Energy

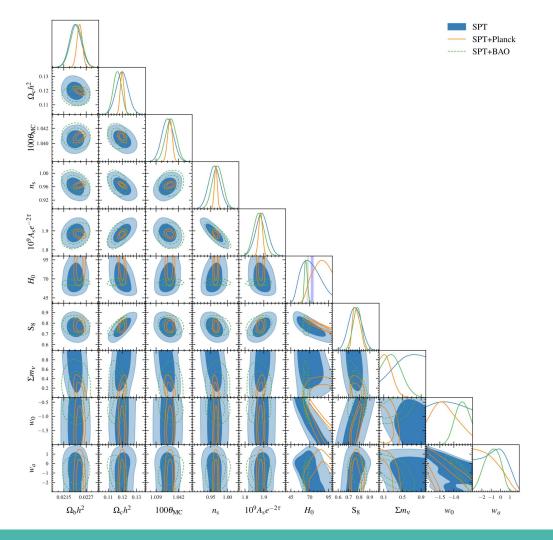


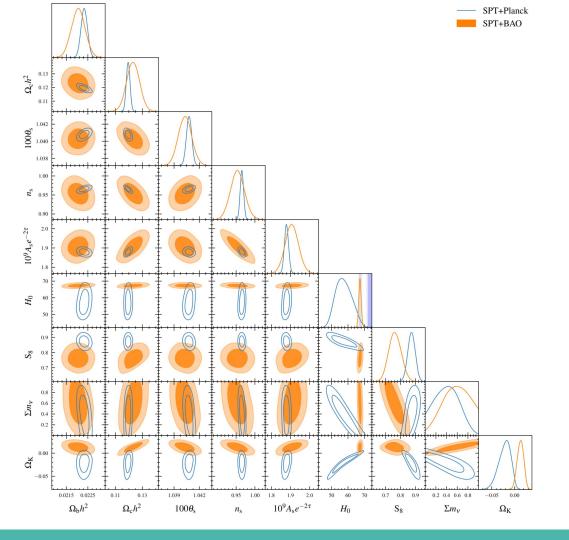
- Best constrained by CMB.
- $Q_{MPCI} = 3.7\sigma$ while $Q_{DMAP} = 2.7\sigma$ for SPBP.
- Best-fit χ² compared to all models, w/ and w/o SH0ES.
- Difficult to constrain, with some bimodality.
- ACT DR4 is compatible with higher f_{EDE} .

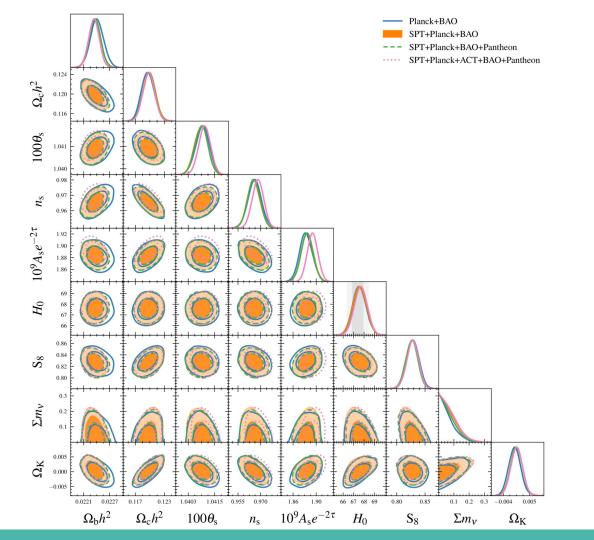
Early Dark Energy: SPT vs ACT

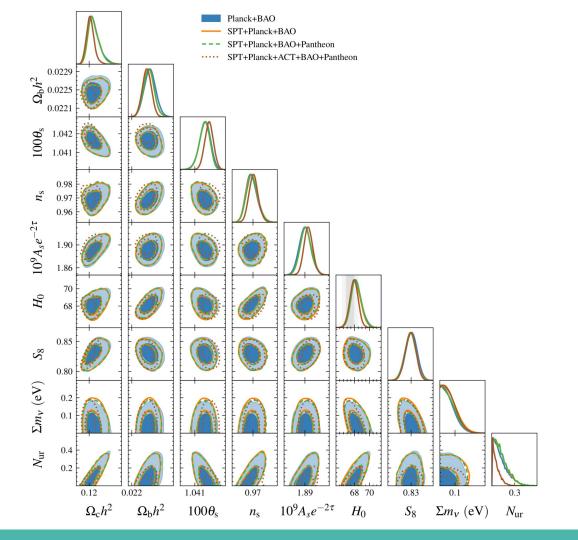

The Majoron

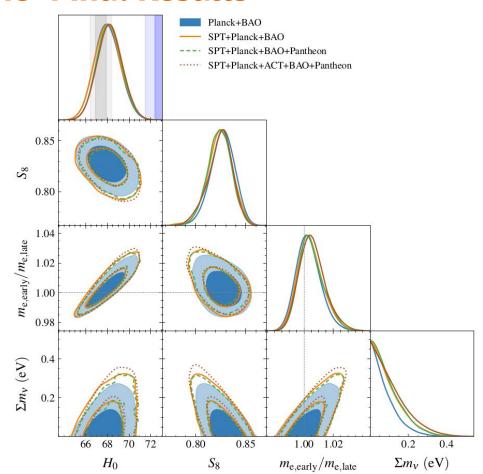



The Power of an Emulator


- Boltzmann codes are the tightest bottleneck of Bayesian analysis.
- To speed up the process, use neural-networks based emulators of Boltzmann codes.
- Classical emulators build on previously trained samples.
- The emulator we use builts its training data while running, i.e. online
- Stable results for minimizations
- Refs: <u>arXiv:2307.01138</u>
 - https://github.com/svenguenther/cobaya

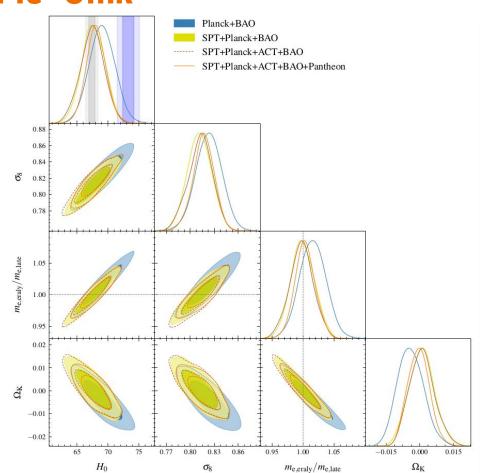

H₀ for Each Model and Data-set

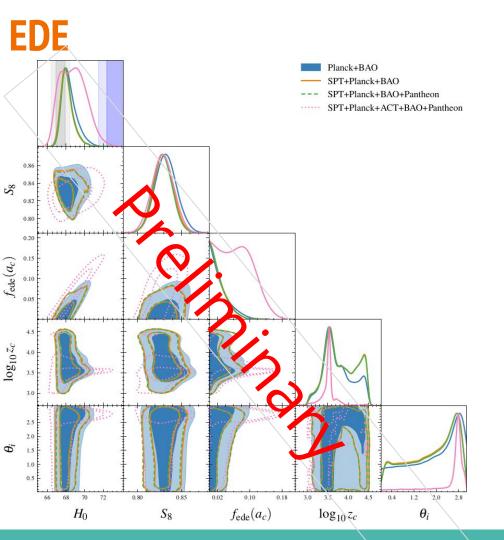




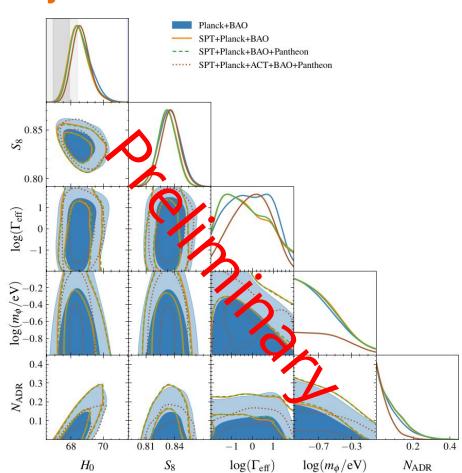
Models	\mathcal{D}_{S}	$\mathcal{D}_{\mathrm{SP}}$	$\mathcal{D}_{\mathrm{SB}}$	$\mathcal{D}_{ ext{PB}}$	$\mathcal{D}_{\mathrm{SPB}}$	$\mathcal{D}_{\mathbf{SPBP}}$	$\mathcal{D}_{ ext{SPAB}}$	$\mathcal{D}_{ ext{SPABP}}$
ΛCDM	$68.5^{+1.5}_{-1.5}$	$67.40^{+0.49}_{-0.50}$	$67.69^{+0.55}_{-0.56}$	$67.57^{+0.41}_{-0.41}$	$67.52^{+0.37}_{-0.37}$	$67.56_{-0.38}^{+0.35}$	$67.49^{+0.34}_{-0.39}$	$67.53^{+0.34}_{-0.37}$
$+\Sigma m_{\nu}$	$60.0^{+5.0}_{-5.6}$	$66.8^{+1.4}_{-0.7}$	$67.11^{+0.71}_{-0.70}$	$67.61^{+0.53}_{-0.48}$	$67.50^{+0.52}_{-0.44}$	$67.60^{+0.49}_{-0.43}$	$67.50^{+0.58}_{-0.44}$	$67.59_{-0.42}^{+0.53}$
$+\Sigma m_{\nu} + \text{CPL}$	71^{+10}_{-15}	83^{+14}_{-7}	$65.1_{-2.3}^{+1.7}$	$65.6^{+1.6}_{-2.4}$	$65.6^{+1.6}_{-2.4}$	$67.94_{-0.79}^{+0.78}$	$66.5^{+1.3}_{-1.7}$	$67.92^{+0.81}_{-0.81}$
$+\Sigma m_{\nu} + N_{\rm eff}$	$64.6^{+6.2}_{-7.0}$	$66.1^{+1.9}_{-1.6}$	$70.5^{+1.8}_{-2.5}$	$68.20^{+0.63}_{-0.78}$	$68.16^{+0.65}_{-0.76}$	$68.25^{+0.62}_{-0.76}$	$67.83^{+0.58}_{-0.60}$	$67.93^{+0.57}_{-0.58}$
$+\Sigma m_{\nu} + \Omega_{\rm k}$	_	$57.4_{-5.5}^{+4.4}$	$67.29_{-0.74}^{+0.73}$	$67.55^{+0.63}_{-0.63}$	$67.58^{+0.64}_{-0.64}$	$67.67^{+0.62}_{-0.62}$	$67.59^{+0.64}_{-0.64}$	$67.69^{+0.62}_{-0.62}$
$+\Sigma m_{\nu} + N_{\rm SIDR}$	$63.5^{+6.7}_{-6.8}$	$68.0^{+1.6}_{-1.4}$	$70.0_{-2.2}^{+1.5}$	$68.47^{+0.68}_{-0.95}$	$68.41^{+0.70}_{-0.93}$	$68.53^{+0.69}_{-0.92}$	$67.86^{+0.60}_{-0.61}$	$67.96_{-0.58}^{+0.57}$
m_e	112^{+53}_{-51}	50^{+10}_{-13}	$66.8^{+1.8}_{-1.8}$	$67.8^{+1.1}_{-1.1}$	$67.8^{+1.1}_{-1.1}$	$68.0^{+1.1}_{-1.1}$	$67.7^{+1.1}_{-1.1}$	$67.9_{-1.1}^{+1.1}$
$m_e + \Sigma m_{\nu}$	70^{+20}_{-20}	$58.9^{+2.1}_{-8.9}$	$72.8^{+3.3}_{-3.9}$	$68.0^{+1.1}_{-1.2}$	$68.0^{+1.1}_{-1.3}$	$68.2^{+1.1}_{-1.2}$	$68.0^{+1.2}_{-1.2}$	$68.2^{+1.2}_{-1.2}$
$m_e + \Omega_k$	74^{+16}_{-5}	$59.3^{+2.1}_{-9.3}$	$64.5^{+1.9}_{-2.6}$	$69.1_{-2.1}^{+2.1}$	$67.7^{+1.9}_{-1.8}$	$68.2^{+1.6}_{-1.6}$	$67.5^{+1.9}_{-1.9}$	$68.1^{+1.6}_{-1.6}$
$m_e + \Omega_k + \Sigma m_{\nu}$	====	(3	$67.0_{-6.8}^{+4.8}$	$71.0_{-3.9}^{+2.4}$	$69.6^{+2.2}_{-3.7}$	$69.8^{+1.8}_{-2.9}$	$69.5^{+2.3}_{-3.7}$	$69.8^{+2.0}_{-3.0}$
EDE	$70.3^{+1.7}_{-2.2}$	$67.98^{+0.54}_{-0.92}$	$69.6^{+0.9}_{-1.6}$	$68.3_{-0.98}^{+0.52}$	$68.12^{+0.43}_{-0.78}$	$68.18^{+0.42}_{-0.79}$	$68.7^{+0.6}_{-1.4}$	$68.8^{+0.6}_{-1.4}$
Majoron	$74.4^{+3.1}_{-3.7}$	$68.75^{+0.62}_{-0.86}$	$70.5^{+1.3}_{-2.2}$	$68.58^{+0.53}_{-0.77}$	$68.50^{+0.48}_{-0.70}$	$68.55^{+0.48}_{-0.70}$	$68.6^{+0.46}_{-0.64}$	$68.64^{+0.48}_{-0.61}$

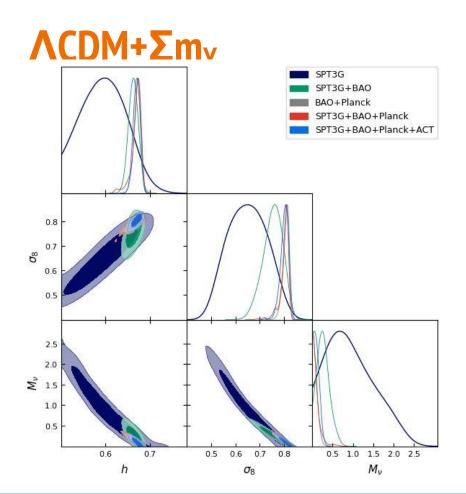
Models	Additional Parameters
Λ CDM	
$+\Sigma m_{\nu}$	$\Sigma m_{\nu} < 0.16 \text{ eV } (95\%)$
$+\Sigma m_{\nu} + \text{CPL}$	$\Sigma m_{\nu} < 0.29 \text{ eV } (95\%), \ w_0 = -0.97 \pm 0.08, \ w_a = -0.29 \pm 0.39$
$+\Sigma m_{\nu} + N_{\mathrm{eff}}$	$\Sigma m_{\nu} < 0.15 \text{ eV } (95\%) \text{ , N}_{\text{eff}} < 0.17 \ (95\%)$
$+\Sigma m_{\nu} + N_{\mathrm{SIDR}}$	$\Sigma m_{\nu} < 0.15 \text{ eV}(95\%), N_{\text{SIDR}} < 0.16 (95\%)$
$+\Sigma m_{\nu}+\Omega_{K}$	$\Sigma m_{\nu} < 0.17 \text{ eV } (95\%), \ \Omega_{\text{K}} = -0.0005 \pm 0.0020$
m_e	$m_{\rm e,early}/m_{\rm e,late} = 1.003 \pm 0.006$
$m_e + \Sigma m_{\nu}$	$m_{\rm e,early}/m_{\rm e,late} = 1.0057 \pm 0.0090, \ \Sigma m_{\nu} < 0.29 \ {\rm eV}(95\%)$
$m_e + \Omega_K$	$m_{\rm e,early}/m_{\rm e,late} = 1.0035 \pm 0.0164, \Omega_{\rm K} = -0.0005 \pm 0.0048$
$m_e + \Omega_K + \Sigma m_{\nu}$	$m_{\rm e,early}/m_{\rm e,late} = 1.03 \pm 0.03, \Omega_{\rm K} = -0.004 \pm 0.006, \Sigma m_{\nu} < 0.48 {\rm eV} (95\%)$
EDE	$\theta_{\rm i} = 1.8 \pm 0.9, \log(a_{\rm c}) = -3.8 \pm 0.4, f_{\rm EDE}(a_{\rm c}) < 0.06 (95\%)$
Majoron	$\log(m_{\phi}/\text{eV}) = 0.2950 \pm 0.6598, \log(\Gamma_{\text{eff}}) = 0.0556 \pm 0.8846, \Delta N_{\text{ADR}} < 0.15 (95\%)$


Me+Mnu: Results

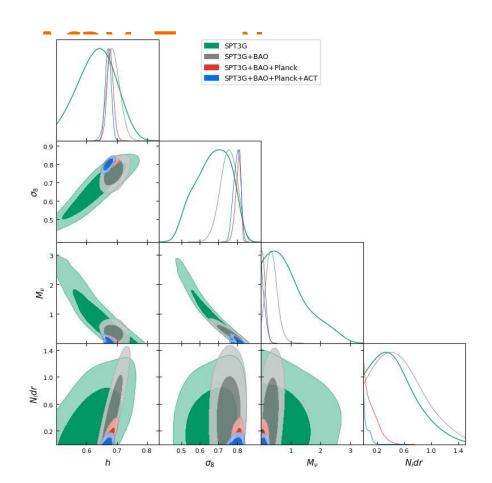

Grey Band: Planck 2018 LCDM

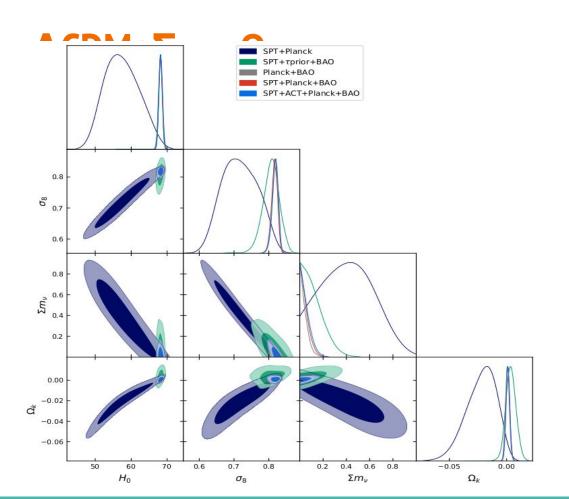
Purple Band: SH0ES


Me+Omk


Me+Mnu+Omk Planck+BAO SPT+Planck+BAO SPT+Planck+BAO+Pantheon SPT+Planck+ACT+BAO+Pantheon $\overset{\infty}{\mathbf{o}}^{0.80}$ 0.75 me,early/me,late $\mathbf{\mathring{A}}_{0.00\,1}$ -0.02 $\sum_{0.5}^{1.5} \left(eV\right)$ 0.75 0.80 0.85 1.0 0.5 1.0 1.5 70 80 1.1 1.2 -0.02 0.00 H_0 S_8 $m_{e,early}/m_{e,late}$ Ω_{K} $\Sigma m_{\nu}(eV)$

Majoron

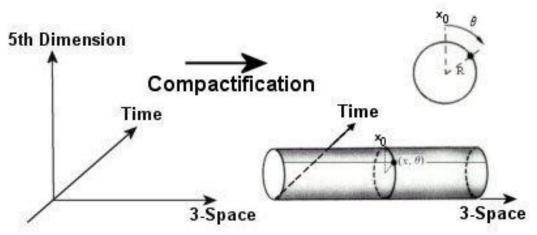

Sub eV mass

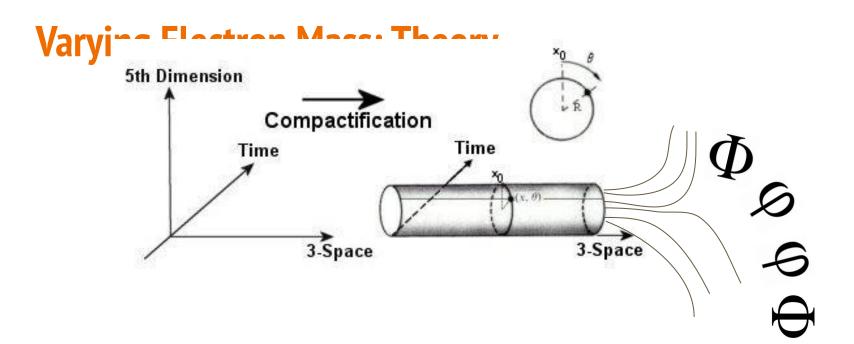

Param eter	SPT+ ACT+ Planck+ BAO
Ho	67.00±0.82
σ 8	0.803±0.019

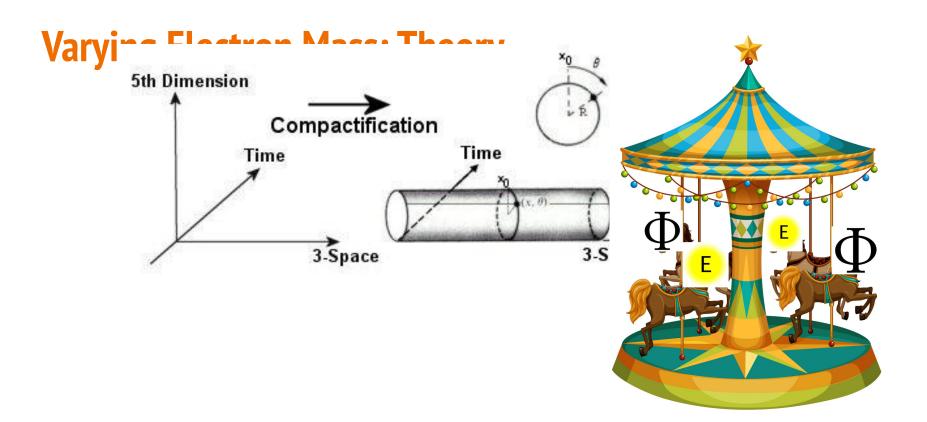
VCDM+Zm-+N " SPT3G SPT3G+BAO BAO+Planck SPT3G+BAO+Planck SPT3G+BAO+Planck+ACT 0.9 0.8 0.6 0.5 3 M 1.5 ≥ 1.0 0.5 0.6 0.7 0.8 0.6 0.8 2 3 0.5 1.0 1.5 1 $N_{u}r$ σ_8 M_{ν}

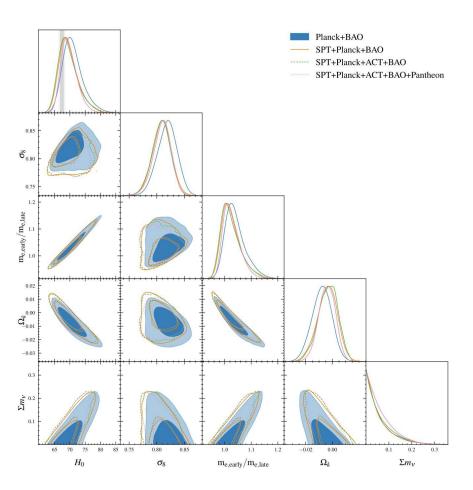

Param eter	SPT+ ACT+ Planck+ BAO
H₀	67.10±0.85
σ ₈	0.812±0.009

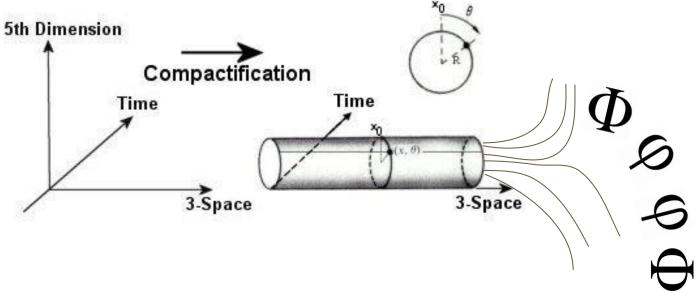
Param eter	SPT+ ACT+ Planck+ BAO
Ho	67.22±0.91
O 8	0.801±0.022


Param eter	SPT+ ACT+ Planck+ BAO
H₀	68.16±0.46
σ8	0.818±0.009




Param eter	SPT+ ACT+ Planck+ BAO
Н₀	66.89±1.62
O 8	0.808±0.017


SLIDES FOR A GENERAL AUDIENCE TALK



5th Dimension Compactification Time Time 3-Space 3-Space

Early Dark Engrave Thooms

$$V(\phi) = \Lambda_{\text{ede}}^4 \left[1 - \cos(\phi/f_{\text{ede}}) \right]^n$$
 Kam

Kamionkowski & Riess(2022)