Galactic Science

Giuseppe Puglisi

CMB S4- Spring meeting 27/03/2024

Istituto Nazionale di Fisica Nucleare

Planck Collaboration 2016

	20	40	60	<u>۹</u> ۵	100
0	20	40 μK _{RJ} @	30 GHz	00	100

and the second second

A second second					
					The Long
	3	10 μK _{RJ} @	30 353 GHz	100	

 A^P_{s}

 $A_{\rm d}^P$

1. Galactic Foregrounds

Synchrotron

Credits: J. Aumont

Thermal Dust

Galactic Foreground modelling

Aim to extract as much info as possible to access the emission at small scales strongly contaminated by noise

- De-noise techniques

- Clustering techniques to identify regions of high level of homogeneity (GP,+ 2022, Carones, GP, + 2023)

-Use neural networks to *learn statistical properties* of dust emission in high SNR regions (Krachmalnicoff&GP 2021, GP&Bai 2020)

Generation of small angular scales Krachmalnicoff&GP 2021

Training details DCGAN (Radford et al. 2016):

- Inputs: 320x320 images (20x20 deg2) dust maps at 80' arcmin reso, Outputs: dust maps at 12'
- Training from 350 images with mini-batches of 16 images
- stochastic Gradient Descent (Adam optimizer, LR=0.0002) for 3000 epochs

Dust temperature MLS

Training set Inputs: T Dust @ 80' Outputs: T Dust @ 12'

 M_{LS}^P

Krachmalnicoff&GP 2021

Dusty emission

At ν > 200 GHz, mainly from : Cold Galactic Clumps are ~1.8% polarized

Cold Galactic Clumps

- **Using the Planck Galactic Cold Clumps** Catalog, PGCC
- stack 0.5x0.5 deg2 Polarization maps at the source location
- Remove bias due to background
- Assess the level of average fractional polarization
- Alina+ 2019 found that most of these objects live in Galactic filaments -> Galactic magnetic field with dust polarized emission

Radius [arcmin]

Galactic Magnetic field inference

Assessing Galactic Field Misalignment Cukierman (2022),

-> EB dust power spectra

Figure 4.

Summary

- exo-Oorts Clouds (Nibauer 2021)
- **Need** to characterize and model the Galactic foregrounds to efficiently remove it for inflationary B-mode searches
- maps!
- Models already released and publicly available in the pysm3 package https://github.com/galsci/pysm

Still a lot of exciting science to do with CMB! AME polarization and

• Current effort is on forecasting the non-gaussian small scales of Dust emission, that can contaminate small scales CMB polarizatio

