

Astrophysics with the SZ effects (Chapter 6)

Lindsey Bleem Argonne National Laboratory

Overview

- Overview of Scientific Opportunity
- Outline of Science Chapter
- Plans for Completion

The CMB-S4 deep and wide field surveys will provide a powerful census of the total matter in the Universe (*CMB lensing*) as well as the spatial distribution (kSZ) and thermal energy (tSZ) of its ionized gas.

Additional measurements of *dusty* and *synchrotron* sources (see Mel Archipley's talk tomorrow) will further elucidate the formation and evolution of structures in the Universe.

redshift : 0.07 Time since the Big Bang: 12.8 billion years

TNG Collaboration

visualization Mark Vogelsberger

The IllustrisTNG Team

Annalisa Pillepich Paul Torrey Dylan Nelson Rainer Weinberger Federico Marinacci Rüdiger Pakmor Jill Naiman Shy Genel Lars Hernquist Volker Springel Mark Vogelsberger

Fundamental Data Products

- tSZ cluster catalogs
- Lensing Maps
- tSZ/kSZ component separated maps
- Emissive source catalogs

Fundamental Data Products

tSZ cluster catalogs

- Lensing Maps (Simone's talk)
- •tSZ/kSZ component separated maps (Simone's talk)
- •Emissive source catalogs (Mel's talk)

Fundamental Data Products

CMB-S4 will discover an order of magnitude more of the highest-redshift (z > 1.5) clusters than previous surveys.

The First SPT-3G Cluster Catalog: 100d Deep Field

- The 100d SPT deep field combines data from 5 years of SPT-3G with the SPTpol 100d+ 500d surveys (10 years of CMB observations in total!)
- First cluster catalog to be constructed from data at CMB-S4 noise levels.

	Median Redshift (z)	$\begin{array}{l} \text{Median Mass} \\ (\text{M}_{500c} \times 10^{14}) \end{array}$	Cluster Density (\deg^{-2})
Planck	0.22	4.74	0.02
ACT	0.52	2.38	0.32
SPT-SZ/SPTpol	0.58	3.72	0.49
SPT100d Deep	0.75	1.48	3.92

The First SPT-3G Cluster Catalog: 100d Deep Field

- The 100d SPT deep field combines data from 5 years of SPT-3G with the SPTpol 100d+ 500d surveys (10 years of CMB observations in total!)
- First cluster catalog to be constructed from data at CMB-S4 noise levels.

CMB-S

6.1 Cluster Astrophysics

- 6.1.1 Proto-clusters to clusters
 - Comparison of tSZ and lensing to infer degree of virialization
- 6.1.2 High-z cluster sample
 - Feedback / ICM enrichment / star formation
 - Systematic biases: radio/dust contamination of the SZ signal
- 6.1.3 Measurements of ICM pressure profiles
 - Detailed studies of low-z systems
 - · Resolving shocks / cold fronts resolved in nearby systems
 - Measurements of Splash back / outer accretion shock
 - Non-thermal pressure profiles
 - SZ fluctuations
 - Probe of mass accretion rate/history
- 6.1.4 Cluster Scaling relations
- 6.1.5 Relativistic SZ distortions
- 6.1.6 Rotational kSZ

6.2 Galaxy/Field astrophysics

- 6.2.1 CGM studies for massive galaxies
- 6.2.2 Stacking studies for underdense regions and filaments
- 6.2.3 Cluster outskirts/WHIM

6.3 Tracing the mass-gas connections

- 6.3.1 y-map x lensing/galaxies for gas studies
- 6.3.2 Impact of baryons on lensing
- 6.4 Connections to High-resolution SZ follow-up experiments
- 6.5 Synergies with other wavelengths (X-ray, optical, radio)

6.1 Cluster Astrophysics

- 6.1.1 Proto-clusters to clusters
 - Comparison of tSZ and lensing to infer degree of virialization
- 6.1.2 High-z cluster sample
 - Feedback / ICM enrichment / star formation
 - Systematic biases: radio/dust contamination of the SZ signal
- 6.1.3 Measurements of ICM pressure profiles
 - Detailed studies of low-z systems
 - · Resolving shocks / cold fronts resolved in nearby systems
 - Measurements of Splash back / outer accretion shock
 - Non-thermal pressure profiles
 - SZ fluctuations
 - Probe of mass accretion rate/history
- 6.1.4 Cluster Scaling relations
- 6.1.5 Relativistic SZ distortions
- 6.1.6 Rotational kSZ

6.2 Galaxy/Field astrophysics

- 6.2.1 CGM studies for massive galaxies
- 6.2.2 Stacking studies for underdense regions and filaments
- 6.2.3 Cluster outskirts/WHIM

6.3 Tracing the mass-gas connections

- 6.3.1 y-map x lensing/galaxies for gas studies
- 6.3.2 Impact of baryons on lensing

6.4 Connections to High-resolution SZ follow-up experiments

6.5 Synergies with other wavelengths (X-ray, optical, radio)

15 z bins: $z \in [0.1, 1.5]$ ($\Delta z = 0.1$) + (1.5, 3.0); Prior(s): $\tau_{re} = 0.007$

Raghunathan et al.

Astrophysical Journal, Volume 926, Issue 2, id.172

6.1 Cluster Astrophysics

- 6.1.1 Proto-clusters to clusters
 - Comparison of tSZ and lensing to infer degree of virialization
- 6.1.2 High-z cluster sample
 - Feedback / ICM enrichment / star formation
 - Systematic biases: radio/dust contamination of the SZ signal
- 6.1.3 Measurements of ICM pressure profiles
 - Detailed studies of low-z systems
 - · Resolving shocks / cold fronts resolved in nearby systems
 - Measurements of Splash back / outer accretion shock
 - Non-thermal pressure profiles
 - SZ fluctuations
 - Probe of mass accretion rate/history
- 6.1.4 Cluster Scaling relations
- 6.1.5 Relativistic SZ distortions
- 6.1.6 Rotational kSZ

6.2 Galaxy/Field astrophysics

- 6.2.1 CGM studies for massive galaxies
- 6.2.2 Stacking studies for underdense regions and filaments
- 6.2.3 Cluster outskirts/WHIM

6.3 Tracing the mass-gas connections

- 6.3.1 y-map x lensing/galaxies for gas studies
- 6.3.2 Impact of baryons on lensing
- 6.4 Connections to High-resolution SZ follow-up experiments
- 6.5 Synergies with other wavelengths (X-ray, optical, radio)

D. Anbajagane et al. MNRAS, Volume 527, Issue 3

6.1 Cluster Astrophysics

- 6.1.1 Proto-clusters to clusters
 - · Comparison of tSZ and lensing to infer degree of virialization
- 6.1.2 High-z cluster sample
 - Feedback / ICM enrichment / star formation
 - Systematic biases: radio/dust contamination of the SZ signal
- 6.1.3 Measurements of ICM pressure profiles
 - Detailed studies of low-z systems
 - · Resolving shocks / cold fronts resolved in nearby systems
 - Measurements of Splash back / outer accretion shock
 - Non-thermal pressure profiles
 - SZ fluctuations
 - Probe of mass accretion rate/history

6.1.4 Cluster Scaling relations

- 6.1.5 Relativistic SZ distortions
- 6.1.6 Rotational kSZ

6.2 Galaxy/Field astrophysics

- 6.2.1 CGM studies for massive galaxies
- 6.2.2 Stacking studies for underdense regions and filaments
- 6.2.3 Cluster outskirts/WHIM

6.3 Tracing the mass-gas connections

- 6.3.1 y-map x lensing/galaxies for gas studies
- 6.3.2 Impact of baryons on lensing
- 6.4 Connections to High-resolution SZ follow-up experiments
- 6.5 Synergies with other wavelengths (X-ray, optical, radio)

 $log_{10}((\sigma_T/m_ec^2)/(\mu_em_p)Y_{X,500} [Mpc^2])$ Pratt et al. ApJ 890, 2 id 186

CMB-S4

6.1 Cluster Astrophysics

- 6.1.1 Proto-clusters to clusters
 - Comparison of tSZ and lensing to infer degree of virialization
- 6.1.2 High-z cluster sample
 - Feedback / ICM enrichment / star formation
 - Systematic biases: radio/dust contamination of the SZ signal
- 6.1.3 Measurements of ICM pressure profiles
 - Detailed studies of low-z systems
 - · Resolving shocks / cold fronts resolved in nearby systems
 - Measurements of Splash back / outer accretion shock
 - Non-thermal pressure profiles
 - SZ fluctuations
 - Probe of mass accretion rate/history
- 6.1.4 Cluster Scaling relations
- 6.1.5 Relativistic SZ distortions
- 6.1.6 Rotational kSZ

6.2 Galaxy/Field astrophysics

6.2.1 CGM studies for massive galaxies

- 6.2.2 Stacking studies for underdense regions and filaments
- 6.2.3 Cluster outskirts/WHIM

6.3 Tracing the mass-gas connections

- 6.3.1 y-map x lensing/galaxies for gas studies
- 6.3.2 Impact of baryons on lensing
- 6.4 Connections to High-resolution SZ follow-up experiments
- 6.5 Synergies with other wavelengths (X-ray, optical, radio)

The electron temperature profile given by the ratio of the kSZ and tSZ measurements of DES redMaGiC galaxies.

6.1 Cluster Astrophysics

- 6.1.1 Proto-clusters to clusters
 - Comparison of tSZ and lensing to infer degree of virialization
- 6.1.2 High-z cluster sample
 - Feedback / ICM enrichment / star formation
 - Systematic biases: radio/dust contamination of the SZ signal
- 6.1.3 Measurements of ICM pressure profiles
 - Detailed studies of low-z systems
 - Resolving shocks / cold fronts resolved in nearby systems
 - Measurements of Splash back / outer accretion shock
 - Non-thermal pressure profiles
 - SZ fluctuations
 - Probe of mass accretion rate/history
- 6.1.4 Cluster Scaling relations
- 6.1.5 Relativistic SZ distortions
- 6.1.6 Rotational kSZ

6.2 Galaxy/Field astrophysics

- 6.2.1 CGM studies for massive galaxies
- 6.2.2 Stacking studies for underdense regions and filaments
- 6.2.3 Cluster outskirts/WHIM
- 6.3 Tracing the mass-gas connections
 - 6.3.1 y-map x lensing/galaxies for gas studies
 - 6.3.2 Impact of baryons on lensing
- 6.4 Connections to High-resolution SZ follow-up experiments
- 6.5 Synergies with other wavelengths (X-ray, optical, radio)

Tanimura et al. MNRAS, Volume 483 Issue 1

6.1 Cluster Astrophysics

- 6.1.1 Proto-clusters to clusters
 - Comparison of tSZ and lensing to infer degree of virialization
- 6.1.2 High-z cluster sample
 - Feedback / ICM enrichment / star formation
 - Systematic biases: radio/dust contamination of the SZ signal
- 6.1.3 Measurements of ICM pressure profiles
 - Detailed studies of low-z systems
 - Resolving shocks / cold fronts resolved in nearby systems
 - Measurements of Splash back / outer accretion shock
 - Non-thermal pressure profiles
 - SZ fluctuations
 - Probe of mass accretion rate/history
- 6.1.4 Cluster Scaling relations
- 6.1.5 Relativistic SZ distortions
- 6.1.6 Rotational kSZ

6.2 Galaxy/Field astrophysics

- 6.2.1 CGM studies for massive galaxies
- 6.2.2 Stacking studies for underdense regions and filaments
- 6.2.3 Cluster outskirts/WHIM

6.3 Tracing the mass-gas connections

- 6.3.1 y-map x lensing/galaxies for gas studies
- 6.3.2 Impact of baryons on lensing

6.4 Connections to High-resolution SZ follow-up experiments

6.5 Synergies with other wavelengths (X-ray, optical, radio)

Flores et al. MNRAS, Volume 507 Issue 4

Path to completion

- Further coordination with LSS and emissive sources to define boundaries in chapters
 - (e.g., protoclusters, cross-correlation of Compton-y map with other tracers, kSZ)
- Updating forecasts for CMB-S4 and highlighting science cases with largest gains from Stage 3 → Stage 4 CMB data
 - Check the impact of using end-to-end simulations (like DC)
 - Variations amongst current/upcoming hydrodynamic simulations (CRK-HACC, EAGLE, FIRE, Flamingo, Illustris, Magneticum, SIMBA, ...) as well as "baryonification" of N-body sims (Agora, Baryon-pasters, PICASSO, Websky, ...)
- Identifying missed synergies between CMB-S4 and multi-wavelength surveys for cluster/galaxy astrophysics
- Assign writing assignments to members of the group to finish chapter 6.
 - Volunteers at the moment: Jim Bartlett, Lindsey Bleem, Sebastian Bocquet, Jean-Baptiste Melin, Elena Pierpaoli, Srinivasan Raghunathan (+ you!)

