
 

 

Doc: CMBS4-doc-750-v1 
Date: 06/07/2021 
Status: Draft 
Page 1 of 29 

TDAQ/Control Trade Study 2021 

 

 

CMB-S4 
DAQ/CONTROL TRADE STUDY 2021 

 CMBS4-doc-750-v1 

 

Author(s) Role/Organization Date 

Laura Newburgh CMB-S4 DAQ L2 Lead 06/07/2021 

Nathan Whitehorn CMB-S4 DAQ L2 Deputy Lead 06/07/2021 

Cosmin Deaconu CMB-S4 DAQ L3 06/07/2021 

 
 

REVISION HISTORY 
Version 
 

Revision 
Date 

Description of Changes 

v1 06/07/2021 first draft 

   

   

   

 

 

 

 

 
This document has been officially released by the CMB-S4 project office if: 



 

 

Doc: CMBS4-doc-750-v1 
Date: 06/07/2021 
Status: Draft 
Page 2 of 29 

TDAQ/Control Trade Study 2021 

 
● A unique DocID number is printed on the bottom-right corner of each document page. 

● The document approval page displays a full set of valid e-signatures. 
● An e-signature audit trail is appended to this document. 

  



 

 

Doc: CMBS4-doc-750-v1 
Date: 06/07/2021 
Status: Draft 
Page 3 of 29 

TDAQ/Control Trade Study 2021 

 

 

APPROVALS 

Name Project Role Signature Date 

John Corlett Project Director   

Murdock Gilchriese Deputy Project Director   

John Carlstrom NSF Principal Investigator 
Project Scientist 

  

Matthaeus Leitner DOE Project Manager   

Jeff Zivick NSF Project Manager   

Robert Besuner Project Engineer   

Brenna Flaugher Technical Integration Scientist   

John Ruhl Instrument Scientist   

Julian Borrill Data Scientist   

  



 

 

Doc: CMBS4-doc-750-v1 
Date: 06/07/2021 
Status: Draft 
Page 4 of 29 

TDAQ/Control Trade Study 2021 

 

TABLE OF CONTENTS 
 

Purpose And Scope 5 

References 5 
Applicable Documents 5 

Reference Documents 5 

Acronyms 5 

Definitions 6 

CMB-S4 DAQ/Control Trade Study 6 

Executive Summary 6 

DAQ/Control Software Package Testing description 7 
Requests from S4 users 7 

Additional Considerations 7 

Elucidation of Requirements 7 

Control : 8 

Data Acquisition : 9 

Monitoring and Alarms : 10 

Comparison of Distinguishing Requirements 11 

Some comments on least competitive packages 12 

Comments on most competitive packages 13 

Conclusion 14 

Appendices: 15 
Appendix A: ALMA 15 

Appendix B: CLASS 18 

Appendix C: EPICS 20 

Appendix D: Generic Control Program (GCP) 23 

Appendix E: LSST 24 

Appendix F: Simons Observatory OCS 27 

Appendix G: Alternative Commercial Solutions 29 

 

 

  



 

 

Doc: CMBS4-doc-750-v1 
Date: 06/07/2021 
Status: Draft 
Page 5 of 29 

TDAQ/Control Trade Study 2021 

 

1. Purpose And Scope 

This document outlines a comparison of current software packages and benchmarks them 
against the DAQ/Control/Monitoring/Alarm requirements.  

2. References 
References used within this document are detailed in the following subsections.  Unless otherwise noted, 
the information contained in this document takes precedence over information contained in referenced 
materials. 

2.1. Applicable Documents 

The following documents are considered as part of this document to the extent specified herein.  If not 
explicitly stated differently, the latest issue of the document is valid. 

AD# Document Title Document No. Version Precedence 

     

     

     

     

2.2. Reference Documents 

The following documents contain additional information useful for providing history and context for the 
material contained in this document. 

RD# Document Title Document No. Version 

    

    

    

    

2.3. Acronyms 

Acronym Full text 

  



 

 

Doc: CMBS4-doc-750-v1 
Date: 06/07/2021 
Status: Draft 
Page 6 of 29 

TDAQ/Control Trade Study 2021 

 

  

  

  

  

  

2.4. Definitions 

Term Definition 

  

  

  

  

  

  

3. CMB-S4 DAQ/Control Trade Study 

Executive Summary 
The goal of this document is to provide a clear set of criteria to use in selecting the CMB-S4 
DAQ package. We considered a variety of astronomical DAQ+control+monitoring software 
packages developed for current or future experiments, and compared them against our 
requirements. All packages met some or most of the requirements, and thus commonly met 
requirements were not used to distinguish between software packages. None of the packages 
considered provide clear advantages over the baseline design (SO OCS). The next steps are to 
solicit feedback from the collaboration for additional considerations we have not captured here, 
and use the combination of this document and collaboration feedback to form a ‘software 
downselect’. Collaboration input is critical to this decision because the user experience for the 
DAQ software is essential in widespread adoption. Not all packages have to (currently) meet 
requirements or user requests, work towards those requirements can be included in the DAQ 
work package going forward. 
 



 

 

Doc: CMBS4-doc-750-v1 
Date: 06/07/2021 
Status: Draft 
Page 7 of 29 

TDAQ/Control Trade Study 2021 

 

DAQ/Control Software Package Testing description 
We considered 6 software packages, and some commercial packages:  

● ALMA 
● CLASS 
● EPICS 
● GCP 
● LSST 
● Simons Observatory (SO) OCS - Baseline design 
● Commercial packages 

 
There are three primary considerations we used when comparing software packages: requests 
from S4 users, requirements laid out by the DAQ team, and additional considerations (also from 
input from the collaboration). Currently we place the highest weight on meeting the 
requirements as our benchmarking criteria. A software package does not have to meet all 
requirements to be selected for CMB-S4 as long as there is a reasonable development path for 
meeting all requirements within the risk, budget, and schedule criteria for DAQ.  
 
Each software package was installed by at least one of the core DAQ team members (if publicly 
available) and documentation read to assess which requirements were met (or not met) by the 
code. The full set of notes for each package are given as Appendices in this document; we drew 
from these notes to build our grading rubric and produce a soft recommendation. 

Requests from S4 users 
● Any clear dependencies on libraries that might be deprecated or poorly supported 
● HK quantities plotted against each other 

 

Additional Considerations 
● Level of reuse : has it been adopted by others successfully? 

Elucidation of Requirements 
We compared each DAQ/control software package against a set of requirements first presented 
at the review (Directors Review Requirements). These requirements are broken into three 
categories: requirements for control, requirements for the data acquisition, and requirements for 
monitoring/alarms. Many requirements are met by all packages, however generally these were 
the requirements one might expect from any astronomical control/DAQ framework: centralized 
control, remote mode support, etc. Below we list all requirements.  



 

 

Doc: CMBS4-doc-750-v1 
Date: 06/07/2021 
Status: Draft 
Page 8 of 29 

TDAQ/Control Trade Study 2021 

 

Control :  
Common requirements: The following requirements were essentially met by all packages 
considered.   
 
Distributions The software shall be versioned, collaborative via eg git, issue tracking, reviews 

Deliverable 
Shall provide software for Controls/DAQ compatible test stands (ie Detector Modules, LAT, 
SAT (TBR)) 

Telescope interface 

The telescope vendor shall provide telescope control such that S4 control will be high-level 
(at the level of az/el itinerary 
delivered by network/serial) 

Refrigerator commanding 

DAQ shall provide a carefully considered plan for command of the refrigerators, with 
equipment safety made a particularly high priority, and in consultation with the needs of the 
collaboration and the refrigerator vendor. 

Centralized control 

The Telescope and Site shall include an Observatory Control System (OCS) shall be the 
central coordination facility that controls the delivery of high quality data from scan 
sequencing, providing continuous set-points for the relevant hardware devices and provides 
the operator with the necessary feedback to efficiently and safely monitor the system 
operation. 

Local or remote control 
The OCS shall support local and remote user interaction with the telescopes, receivers, and 
other hardware. 

Support Observer or scheduled 
commands 

Each telescope, receiver, and associated hardware shall be controlled through OCS either 
directly by a telescope operator or through a scripted set of commands. 

Telescope tracking 
The OCS shall control the tracking/guiding function of each telescope within the performance 
specified for the Tracking requirements. 

Support multiple modes 
OCS shall be designed and constructed to support the following operational modes: fully 
automated, calibration, manual observing, engineering and maintenance 

Receiver commanding 
The OCS shall command each receiver's bolometer readout crate, such as calibration, 
tuning, fast cadence modes, and data acquisition 

Other' commanding 
OCS shall support commanding other components, including but not limited to: calibration 
equipment, heaters, compressors, hardware configuration` 

Commonality Identical software system between Chile and SP, and labs 

Scheduling 
DAQ shall support the execution of observations, which include ordered operations such as 
move to a location, tune detectors, begin a scan pattern, etc 

Modular 
The software shall allow configuration of DAQ/Control objects per lab and changeable by the 
user 

Firmware-free The DAQ system shall not involve firmware 

All hardware interfaces The DAQ interface to all hardware shall be digital 

 
Distinguishing requirements: The following were not necessarily common across all 
packages and so will be used to distinguish between them.  
 
Scalability The DAQ software must work at a variety of scales: single object, lab, testing, receiver, full observatory 

User friendly 
Framework and support shall be structured so that control/Acq and monitoring for new components can 
be added by any qualified collaboration member (eg middle-ware is generally hidden from user) 

Broad The DAQ software shall be written so it can be used on capable lab computer, with compatible OS, 



 

 

Doc: CMBS4-doc-750-v1 
Date: 06/07/2021 
Status: Draft 
Page 9 of 29 

TDAQ/Control Trade Study 2021 

 

hardware/computer 
applicability 

package manager, compiler/library version, etc on the native system 

Open source Software shall be open source with no licensed libraries, packages, etc 

Code language 
Code language shall be limited to a few well-known options, including C++ and Python, with the 
expectation that python shall be the primary language for lab developers 

User access control 
Access to observatory control by users shall be managed and prioritized so that competing commands 
will not be possible 

Messaging layer 
The messaging and routing layer for the control architecture shall be commercial and designed for 
distributed systems 

 
Areas for future development/work: We did not scale test each package. Although we do not 
have concerns for most packages, this testing is required in validating the selected software 
package. 
 
Downtime/uptime The system must not cause more than 0.1% loss of data from downtime 

Verified to work at scale The system shall be verified to work at S4 scale, acceptable via emulators and/or simulations 

 

Data Acquisition :  
Common requirements: The following requirements were essentially met by all packages 
considered (or are hardware requirements and thus not necessarily tied to the choice of 
software). 
 

Data Description 

The OCS shall acquire all required housekeeping data, including metadata, needed for the 
scientific analysis of the survey data as well as, at a minimum, the following: health of 
operating systems, temperatures, pressures, loads, status, rate, weather. 

Data Rate The Data acquisition system shall support data rates up to 4 (TBR) Gbits/s per site 

Data Loss Data loss shall be less than 0.001% per packet 

Timing 

DAQ shall provide absolute timing and any required clocks for synchronization to all systems, 
sent via fiber to each telescope platform, within the timing phase noise jitter requirements 
specified by the detector readout system. The timing breakout at each telescope may include 
IRIG, 10MHz, PPS. 

Error trace/logs Logs and error tracing shall be recorded 

Network 
The DAQ shall provide a network design sufficient for transferring up to 10Gbps from 
telescopes to the recording computers 

Network The domains for high speed and low-speed DAQ may be segregated 

Synchronicity 
The software architecture shall be built to support asynchronous data collection of all data 
types 



 

 

Doc: CMBS4-doc-750-v1 
Date: 06/07/2021 
Status: Draft 
Page 10 of 29 

TDAQ/Control Trade Study 2021 

 

Timing 
The timing system shall meet the requirements from detector readout for phase noise of XX 
dBc/Hz (requirement not yet received from readout) 

 
Distinguishing requirements: The following were not necessarily common across all 
packages and so will be used to distinguish between them. 
 
Data format DAQ shall specify the data format, and the OCS shall record data in that format. 

Time Stamp 
DAQ shall provide PTP absolute timing across fiber to all systems, that time stamp must be 
propagated through the DAQ/control system. 

Network The network shall use TCP/IP as a universal protocol 

Meta-data Data shall include meta-data and shall be recorded (such as bolometer tuning results) 

 

Monitoring and Alarms :  
Common requirements: The framework and approach for live monitoring and alarms was 
generally quite different between the packages due to differing requirements between the 
various experiments. As a result, all of our requirements are distinguishing.  
 
Distinguishing requirements: The following were not necessarily common across all 
packages and so will be used to distinguish between them. 
 

Health & Monitoring 

OCS shall provide real-time monitoring of all housekeeping and diagnostic data, which may 
also include real-time monitoring of detector statistics (on transition, rms). The monitoring 
shall at minimum allow visualization of temporal changes in monitored quantities. Decimated 
views over the entire history will also be supported. 

Health & Monitoring 
The OCS system shall support remote monitoring by authorized personnel using a web 
browser compliant device, including, but not limited to, smart phones, laptops, and tablets. 

Alarms 
DAQ shall provide an alarm system based on housekeeping data and any detector statistics 
provided by the readout crate metadata. 

Alarms 
Alarm notifications shall be hierarchical depending on the severity of the alarm, and site 
dependent based on notification systems already in place. 

Health and Monitoring The monitor shall support real-time data with update rates of no longer than 5s 

Health and Monitoring 
The monitor shall support decimated views of historical data, decimated at cadences of >1 
week 

Health and Monitoring The monitor must be able to support monitoring quantities of up to 100,000 fields/sec 

Monitoring 
The graphical monitoring software must be easily configurable for lab, observatory, and 
testing from the browser itself 

 
 
Areas for future development/work:  



 

 

Doc: CMBS4-doc-750-v1 
Date: 06/07/2021 
Status: Draft 
Page 11 of 29 

TDAQ/Control Trade Study 2021 

 

One request is to monitor one quantity against another, instead of just a time stream of 
quantities (eg, a live monitor that can plot one housekeeping variable against another). This 
requires, in all cases, co-sampled synchronous data, which is not part of the raw data 
acquisition. For any package, enabling this feature in a live monitor will need to be an area of 
development for DAQ if the request is elevated to a requirement on the DAQ package. 

Comparison of Distinguishing Requirements 
We begin by scoring each software package against the distinguishing requirements. Although 
not all requirements should be weighted equally, this provides a raw ranking of the packages 
and allows us to focus on the higher-ranked packages that meet more requirements and hence 
would be likely to need less work to be adopted by CMB-S4. 
 Numerical scoring:  
0=Yes 
1=Partial/some concerns 
2=No 
 
For this scoring rubric, a lower score is preferred. 
 

 ALMA CLASS EPICS GCP LSST SO OCS 

Scalability 0 1 0  0 0 

User friendly 2 1 2 2 0 0 

Broad hardware/computer applicability 2 1 1 2 0 0 

Open source 1 2 0  0 0 

Code language 1 2 1  0 0 

User access control 2 0 0  0 0 

Messaging layer 1 1 1  0 0 

Data format 
1 1 1  1 1 

Time Stamp 1 1 1  1 0 

Network 1 0 0  0 0 

Meta-data 0 1 1  0 0 

Health & Monitoring (real time+historical) 2 1 0  0 0 



 

 

Doc: CMBS4-doc-750-v1 
Date: 06/07/2021 
Status: Draft 
Page 12 of 29 

TDAQ/Control Trade Study 2021 

 

Health & Monitoring (web browser) 2 1 1  0 0 

Alarms (det stats) 0 1 0  0 0 

Alarms (hierarchical) 0 1 0  0 0 

Health and Monitoring (<5s) 2 1 0  1 0 

Health and Monitoring (decimated) 2 1 1  1 0 

Health and Monitoring (100k fields/s) 1 1 0  1 0 

Monitoring (configurable) 2 1 0  1 0 

TOTAL 23 19 10  6 1 

 

Some comments on least competitive packages 
All packages met the majority of requirements, so these comments are focused on the 
disadvantages compared to the baseline design. None had clear advantages over the baseline 
design. 
 
ALMA: 

- Development began over 10 years ago, as a result various choices (eg for messaging 
layer) are outdated or proprietary and substantial development would be required to use 
it for another ~20 years. This work may be undertaken by ALMA but won’t be driven by 
CMB-S4 requirements. 

- Poor user-friendliness, documentation, installation experience. Appears unlikely that an 
‘average’ user would be able to easily add new data streams. 

- Monitoring was inadequate and would need substantial development. 
 
CLASS: 

- Code infrastructure would need significant development: the code is not open source, 
documentation is sparse, and various things are hardcoded which would need to be 
tracked down and generalized (file paths and network addresses, etc.) 

- Timing propagation would need to be updated to meet CMB-S4 architecture 
- Data is written to dirfiles, which do not scale to CMB-S4 data requirements. It is unclear 

how embedded that choice is in the rest of the architecture.  
- Graphical monitoring based on KST, which is ‘maintained’ by a single member of the 

CMB community. This would need substantial development, or wholesale adoption of a 
new monitoring scheme. 



 

 

Doc: CMBS4-doc-750-v1 
Date: 06/07/2021 
Status: Draft 
Page 13 of 29 

TDAQ/Control Trade Study 2021 

 

 
EPICS: 

- EPICS is widely adopted, but as a result is complex, has many legacy components, and 
its own specialized jargon (IOC, PV, CWS…). As a result, a significant amount of 
training with a steep learning curve seems to be required to understand how to develop 
a piece of it. The large ecosystem also means there are many modules that do nearly 
the same thing but the tradeoffs are not always apparent and so recommendations (and 
eventual implications of a given choice) may not be clear.  

- User-friendliness and ability to easily add new hardware is problematic 
 

GCP: 

Comments on most competitive packages 
Two packages are clearly competitive compared to the rest: Simons Observatory OCS and 
LSST/Vera Rubin Telescope. We’ll use the notes from the testing to more directly compare 
these two: 
 
LSST/Vera Rubin Telescope: 
Commercial software dependencies:  Communication middleware is commercial DDS from 
OpenSplice by PrismTech (free and paid version). This may limit us to CentOS 7.  
 
Data storage:  Not discussed. As an imaging telescope with a heavy emphasis on real-time 
map-based CCD data products, FITS files are the storage of choice, it was not clear how 
embedded that choice is in the software. Metadata storage for LSST is captured by their 
Engineering and Facility Database, unclear how embedded the choice is for us as well.  
 
Scaling between lab and observatory: While it is clear this would work at a full observatory 
scale, It is unclear if this system is easy to stand up and maintain in ~20 different testing labs. Is 
there a compact version of this software? Setup seems quite involved at a first glance. 
Deployment at the site is entirely done through a CI/CD pipeline. Speculate: perhaps the 
integration testing aspect of this fills the role of running elements in the lab for testing before 
deployment? 
 
Monitoring and Alarms: Monitoring through the LSST Operators visualization environment, but 
the ‘refresh’ rate, historical data perusal, maximum number of fields per second, and ease of 
configurability were not described and this could be a concern. They have a ‘watcher’ 
component that is written so the alarm rules are easy to write and understand. Alarms do need 
to be acknowledged.  
 



 

 

Doc: CMBS4-doc-750-v1 
Date: 06/07/2021 
Status: Draft 
Page 14 of 29 

TDAQ/Control Trade Study 2021 

 

Time stamp: Timing was not well described in the documentation. Although I am certain they 
are propagating excellent GPS-based timing, how data sets get time tagged and how that is 
propagated into the data streams is not clear. 
 
Other notes: 
May need to actively discourage labview and java. The software itself is heavily Java based 
(based on EXO software). 
 
Simons Observatory OCS (Baseline design): 
Commercial software dependencies: Communication middleware is Crossbar.io, additionally 
uses grafana for live monitoring display and (optionally, though preferred) docker for 
containerization.  
 
Data storage: Data format for all data (bolometer, HK, metadata) is SPT-3G (custom), with a 
serialization software dependency (Cereal). Writing to this format requires some packages that 
may be frustrating to the average user (boost in particular), however that is containerized in 
docker. Because the format is custom, average lab users will require read-in scripts to parse the 
files correctly.   
 
Monitoring and Alarms: Decimation is currently handled by influx; this would likely change if a 
different back-end is adopted to allow more flexible plotting from DAQ (HK quantity against HK 
quantity).  

Conclusion 
We considered a variety of astronomical DAQ+control+monitoring software packages 
developed for current or future experiments, and compared them against our requirements. All 
packages met some or most of the requirements, and so commonly met requirements were not 
used to distinguish between software packages. None of the packages considered provide clear 
advantages over the baseline design (SO OCS). For other considerations (not quite elevated to 
requirements): 

● Reuse: the two most competitive packages are fairly new and have not been re-used 
beyond the experiment they were designed for, and so this was not used as a 
distinguishing criteria.  

● Software dependencies: LSST/Vera Rubin software had one concerning dependency for 
it’s middleware.  

● Flexible HK plotting: This would need to be developed for any of the packages 
considered.  

 
The goal of this document is to provide a clear set of criteria to use in selecting the CMB-S4 
DAQ package. The next steps are to solicit feedback from the collaboration for additional 



 

 

Doc: CMBS4-doc-750-v1 
Date: 06/07/2021 
Status: Draft 
Page 15 of 29 

TDAQ/Control Trade Study 2021 

 

considerations we have not captured here, and use the combination of this document and 
collaboration feedback to form a ‘software downselect’. Collaboration input is critical to this 
decision because the user experience for the DAQ software is essential in widespread adoption. 
As noted, not all packages have to currently meet requirements or user requests, those can be 
included in the DAQ work package going forward. 

 

Appendices: 

Appendix A: ALMA 

DAQ Reviewers: Abby Crites, Cosmin Deaconu 
 
Relevant documentation: 
 
https://www.almaobservatory.org/en/alma-software/ 
https://confluence.alma.cl/display/ICTACS/ICT+ALMA+Common+Software 
(in particular the workshop material)  
 
Requirements met: 
Control 

● Centralized Control: ALMA Common Software (ACS) provides centralized control of 
distributed software. Current “notification channel” backend is CORBA, which they 
correctly recognize as ancient and basically deprecated. Seems to be a current project 
to replace CORBA with ActiveMQ while keeping the same ACS API.  

● Local or remote control: Yes, at least via CLI and some Java applications.  
● Support Observer or Scheduled Commands: Yes, a client can be interactive or long-

running loading scheduled commands.  
● Support Multiple Modes: Yes, by choosing which components to run.  
● Receiver Commanding, Other commanding: Yes, support for device components.  
● Scalability: Yes, scales from single client to large observatory (ALMA). However, it 

seems bulk data transfer does not use CORBA for a lot of components, in favor of some 
proprietary thing called DDS from RTI (which is also C++ only).  

● Commonality: Yes, the same base can be used (with different components) 
● Scheduling: Yes, can have scheduler components.  
● Modular: Yes, different sets of services etc. can be configured.  
● Firmware-free: No firmware.  



 

 

Doc: CMBS4-doc-750-v1 
Date: 06/07/2021 
Status: Draft 
Page 16 of 29 

TDAQ/Control Trade Study 2021 

 

● All-digital: yes, that’s possible 
● Verified to work at scale: Yes, by ALMA 

DAQ 
● Data description: Device controllers have a common way of identifying what properties 

can be archived.  
● Data format: ACS provides a way to access things to be archived and receive bulk data, 

but doesn’t define how anything is actually archived (so can be however).  
● Error trace/logs: Very robust logging infrastructure,  
● Network: Supports bulk data transfer over fast networks and separation of networks 
● Synchronicity: Yes, everything can be queried asynchronously.  
● Meta-data: Yes, all properties of devices can be queried / recorded.  

Monitoring/Alarms 
● Alarms: A robust alarm infrastructure within the logging system, with severity levels and 

priority.  
 
 

Requirements partially met: 
Control 

● Scheduling: Yes, can have scheduler components.  
● Open source: Most components are open source, but some proprietary middleware is 

required for the “improved” bulk data interface (RTI DDS).  
● Code language: C++, Java and Python are supported for most things, but some 

interfaces are only available in C++. Moreover, must use DSL for interface definitions 
and understand Makefiles even for Python modules. Python3 support seems in 
progress.  

● Messaging layer: CORBA is designed for distributed systems, but fell out of vogue a 
while ago and they’re trying to replace it.  

DAQ 
● Data Rate: The (proprietary) “new technology” bulk data transfer can reach the required 

throughput (based on a plot in a presentation), although it was shown for infiniband. The 
legacy one seems to have problems scaling. (Design requirement is only ~0.5 Gbps).  
 
 

Requirements not met: 
Control 

● User-Friendly: Setting up ACS is difficult, easier to use pre-configured virtual machine. 
Writing a new module requires generation of strange directory structure (not so bad) and 
use of C-like DSL for defining the interface of each module (“Interface Definition 
Language”, IDL). Lots of paths need to be set, etc and overall lots of boilerplate required.  



 

 

Doc: CMBS4-doc-750-v1 
Date: 06/07/2021 
Status: Draft 
Page 17 of 29 

TDAQ/Control Trade Study 2021 

 

● Broad hardware/computer applicability: Only a few operating systems are supported 
for deployment (officially just EL7, with EL8 under test). More are supported for 
development.  

● User access control: Seems to be no attempt at avoiding concurrent access and 
components must deal with this themselves by making methods reentrant.  

● Network: Some components seem to use UDP? Hard to tell though.  
DAQ 

● Timing: ALMA design has 48 ms hardware pulse for synchornization of real-time 
systems, otherwise use NTP.  

Monitoring/Alarms 
● Built-in monitoring is extremely limited. There are ways to query properties at desired 

rates, but as far as I can tell,  only rudimentary java plotting tools are available as part of 
the distribution, but this only collects data while running. More complex tools would have 
to be developed.  Also, the rate of monitoring is limited, and latency can be high. It says 
“up to 1 kHz for a few components” Details: 
http://www.eso.org/~almamgr/AlmaAcs/Releases/ACS_8_0/Docs/ACS_Sampling_Syste
m.pdf  
 
 

Unknown if requirements met: 
Control 

● Uptime: Not sure. The fact that kill everything (as opposed to stop)  is an option in the 
java control GUI is maybe not promising? 

DAQ:  
● Data loss:  ??? 

 
Comments on feasibility of meeting all requirements: 
The biggest issues I see are: 

1. Poor user-friendliness. There are these workshops with tons of material and a lot of 
documentation, but the user experience seems poor to me, and much of the 
documentation is very old. I feel like this is unlikely to improve.  
 

2. Use of either outdated (CORBA) or proprietary (RTI DDS) technology. It looks like there 
is some attempt to address this, but might be too late on our timescale. The current non-
proprietary bulk data streams seem to have reliability / throughput problems.  
 

3. Inadequate monitoring features. Required monitoring services would need to be 
integrated by us, and even so, we can’t reach the desired throughput and latency with 
the system design.  

 



 

 

Doc: CMBS4-doc-750-v1 
Date: 06/07/2021 
Status: Draft 
Page 18 of 29 

TDAQ/Control Trade Study 2021 

 

Additional notes: 
● May be difficult to get new data streams without new development? 
● 2 FTE working on the ALMA side to keep this software working 

 

Appendix B: CLASS  
DAQ Reviewers: Brian Koopman 
Relevant documentation:  
 
https://arxiv.org/abs/2012.08433 
Summary Slides from 2021-02-12 DAQ Call 
 
Software doesn’t appear to be open source based on lack of repos available on their GitHub 
Page. 
 
Requirements met: 
Control 

● Centralized control - centralized command script and scheduler that orchestrates 
individual control scripts using PYRO4. 

● Local and remote control - Both through CLI and/or web interface 
● Support Observer or schedule commands 
● Telescope tracking 
● Support multiple modes - Seems to be true 
● Receiver commanding - interfaces with MCEs 
● Other commanding - interfaces with thermometry, custom VPM hardware, etc. 
● Scalability - Has been deployed across both CLASS mounts and 3 if not 4 telescopes by 

now 
● Commonality - not sure how to evaluate this here, but it’s been tested in Chile, 

presumably could also be deployed to SP 
● User friendly - web interface seems friendly, not sure about things like adding systemd 

control scripts with PYRO4 exposed interfaces 
● Scheduling 
● Broad hardware/computer applicability - Seems runnable on systems with systemd and 

Python3.5. Can only really confirm running on Ubuntu 16.04 though 
● Code language - Some C, but mostly Python, occasional Bash 
● User access control - It appears user login to web interface is per user, based on the 

web interface showing you other users currently on the page. Not sure if limiting controls 
is in here. 

● Modular - Seems true 



 

 

Doc: CMBS4-doc-750-v1 
Date: 06/07/2021 
Status: Draft 
Page 19 of 29 

TDAQ/Control Trade Study 2021 

 

● Messaging layer - Data seems to be directly written by an NFS server. Then 
packaged/compressed and sent to NA 

 
DAQ 

● Data description 
● Data format - Dirfiles 
● Error trace/logs - All errors logged to metadata CouchDB 
● Synchronicity 
● Meta-data - All recorded to CouchDB 

Monitoring and Alarms 
● Health and Monitoring - Status page on web interface to display real time 24h view of HK 

data. For longer time periods probably KST on dirfiles is the solution? Not 100% sure 
though. Remote viewing possible. KST viewing likely through VNC? 

● Alarms - Noted that they currently only send to Slack channels, though target could be 
changed. 

 
Requirements not met: 
Control 

● Open source - Doesn’t seem to be open source 
DAQ 

● Timing - All derived via GPS timing on CLASS ACU, used in combination with MCE 
syncbox pulse to assign timestamps to detector data. Noted as a limitation on other 
hardware accepting PTP timing, since MCE hardware doesn’t accept PTP. 

● Time stamp - see above 
Monitoring and Alarms 

● None - Some unknown, see below. 
 
Requirements unsure of: 
Control 

● Firmware-free 
● All hardware interfaces 
● Downtime/uptime 
● Verified to work at scale - Works on 4 telescopes, not sure about scaling past that? 

DAQ 
● Data Rate 
● Data Loss 
● Network - Not sure about 10 Gbps support/network segmentation compatibility. Does 

use UDP for data sending, TCP for commanding. 
● Timing - Sufficient to meet phase noise of ??? dBc/Hz 

Monitoring and Alarms 



 

 

Doc: CMBS4-doc-750-v1 
Date: 06/07/2021 
Status: Draft 
Page 20 of 29 

TDAQ/Control Trade Study 2021 

 

● Alarms - Not sure about hierarchical nature of alarms or details about selected group 
alerts, etc. 

● Health and Monitoring - Is KST sufficient for decimated views of historical data? 100,000 
fields/sec? 

● Monitoring - Ease of graphical monitoring configuration unknown. How difficult is it to 
add a new HK field to the status page? 

 
Comments on feasibility of meeting all requirements: 
After getting in touch with the authors, they are open to the idea of making it public, but not 
without cleaning up some things and writing documentation first. That said, the code does 
hardcode the CLASS infrastructure (file paths and network addresses, etc.), which would need 
some amount of effort to generalize. Documentation is also sparse, so getting up and running 
from the current state is likely not straightforward. 
 
The authors call out lack of PTP integration to MCE hardware limiting their decisions on 
accepting PTP timing in other hardware like the VPM. Their solution uses GPS timing from the 
ACU, so if the S4 ACU accepts PTP, a similar solution could be put in place? 
 
I think adding new control scripts for pieces of hardware wouldn’t be too bad, but am unsure 
about the ease of adding new graphical monitoring for those new pieces of hardware. 
 
In terms of scaling, there were concerns about the scalability of the data acquisition all writing to 
a common network file system directory that gets zipped to a dirfile. Since we don’t want to use 
dirfiles, a replacement mechanism for writing to the file format of choice would need to be 
implemented. 
 
In order to meet requirements the scalability of writing data to disk needs to be solved, it would 
have to be open sourced, and documentation should be written (likely part of the authors open 
sourcing the code.) 
 
Additional notes: 
During the collaboration meeting parallel session Ryan Herbst pointed out that PYRO4 doesn’t 
scale particularly well, as it requires a great deal of bi-directional sockets for each mirrored 
instance. 

Appendix C: EPICS  
DAQ Reviewers: Sasha Rahlin, Cosmin Deaconu 
 
Relevant documentation: 



 

 

Doc: CMBS4-doc-750-v1 
Date: 06/07/2021 
Status: Draft 
Page 21 of 29 

TDAQ/Control Trade Study 2021 

 

The “best” current documentation seems to be at https://docs.epics-controls.org/en/latest/ 
Due to how long EPICS has been around and the fact that there are multiple supported 
versions, there is a lot of documentation in various places, but it is not always easy to 
tell which of the many bits of documentation lying around are relevant.  
 
Requirements met: 
Control: 

● Centralized Control: All components talk to each other using the specialized EPICS 
wire  protocol. Historically this is “Channel Access” but new versions of EPICS have a 
new replacement called “pvAccess” which is apparently higher throughput (see e.g. 
http://epics-pvdata.sourceforge.net/talks/2015/ICALEPCS2015_WEA3O02_TALK.pdf , 
they claim it can saturate a 10 Gb link!). These protocols support pub/sub, introspection, 
and all the normal things you’d expect.  

● Local and Remote Control: Channel Access and pvAccess are network transparent, 
with a wide variety of clients available.  

● Supported Observer or Scheduled commands: Many ways to control, including a 
large variety of client interfaces , from  Eclipse-based  (Control Studio) to Motif-based 
tools. There is also a domain specific language for a control state machine (Sequencer), 
and surely other ways to schedule.  

● Telescope tracking: Can’t find details, but e.g. Keck uses EPICS (and likes it! At least 
based on this. Keck servo is 40 Hz.  

● Supports multiple modes: Yes, too many.  
● Receiver Commanding: Yes, via a “configuration” interface 
● Other Commanding: Yes.  
● Scalability: Yes, will scale from a test setup on a laptop to an entire accelerator.  
● Commonality: Yes, can use in different configurations.  
● Scheduling: Yes, this is at least possible using with Sequencer DSL and I think also 

using some database interface (which may have some flowcharty GUI).  
● Broad hardware/computer applicability: The base system (and likely lot of common 

modules) seem to run fine on a variety of Linux systems as well as Windows and 
MacOS. But it’s a big ecosystem, surely some modules/extensions have more stringent 
requirements  

● Open Source: Yes, at least the base. Some modules for specific hardware support may 
not be.  

● Code language: EPICS seems to be implemented in a mix of  C and C++,  but bindings 
available in every conceivable language (Python, Perl, JavaScript, Java, C#, MATLAB), 
and some inconceivable ones (IDL, LabView, PHP).  

● User Access Control: It is possible to have user access control in EPICS to limit 
permissions by certain users. It also appears to be possible to lock control fields to avoid 
concurrent access from multiple clients.  

● Modular:  Yes, (though not necessarily user-friendly) 



 

 

Doc: CMBS4-doc-750-v1 
Date: 06/07/2021 
Status: Draft 
Page 22 of 29 

TDAQ/Control Trade Study 2021 

 

● Firmware-Free: No firmware.  
● All hardware interfaces: There is support for digital hardware interfaces (???) 
● Messaging Layer: Uses its own bespoke thing, but is widely-deployed and designed for 

distributed systems.  
● Downtime/Uptime: No apparent complaints about reliability 
● Verified to work at scale: Entire accelerator complexes (e.g. SLAC, J-PARC) with 

thousands of devices can be controlled by EPICS.  
DAQ: 

● Data Description: EPICS can monitor and record all types of housekeeping values.  
● Data Rate: Apparently can fill a 10 Gb link with PvAccess 
● Data Loss: Seems to use TCP for everything but discovery, as far as I can tell.  
● Timing: Seems possible to deploy precise timing using EPICS (see e.g. 

https://epics.anl.gov/meetings/2001-05/psi/SLStimingEPICS1.pdf)  
● Time Stamp: There do appear to be some EPICS users successfully using PTP, based 

on a cursory search.  I don’t see any explicit hardware support for PTP modules in the 
database, but I might be missing it. Some commercial vendors of PTP hardware may 
support EPICS.  

● Error trace/logs: There is a way to output/log error information within EPICS 
● Network:  Can support 10 Gb and complex network topologies.  
● Synchronicity: It seems like almost all input output controllers use the Asyn module for 

asynchronous data collection 
● Meta-data: Anything can be exposed as a process variables 

Monitoring and Alarms:  
● Health & Monitoring:  A plethora of monitoring clients are available, including React-

based clients which should work on mobile devices. There is a huge amount of 
customizability here.  

● Alarms: At least one very configurable alarm system available, with severity options.  
● Update latency: It seems like near-realtime monitoring is standard 
● Update rate: It is possible to monitor individual fields at up to 10 kHz, I think.  
● Monitoring flexibility:  The monitoring system can be configured for all sorts of 

settings.  
 
Requirements partially met: 
DAQ: 

● Data Format:  The wire protocol is meant to be used with a schema in its specified 
format (https://github.com/epics-base/pvAccessCPP/wiki/Protocol-Encoding ) . It may be 
possible to encode the DAQ data format in this schema. Even if it’s not,  it’s possible to 
send arrays of bytes  

● Network: Data transfer is TCP/IP but broadcast/discovery is UDP 
 
Requirements not met: 



 

 

Doc: CMBS4-doc-750-v1 
Date: 06/07/2021 
Status: Draft 
Page 23 of 29 

TDAQ/Control Trade Study 2021 

 

Control: 
● User-friendly: EPICS is a big, complicated system with lots of legacy components and a 

lot of specialized jargon (IOC, PV, CWS…). A significant amount of training seems to be 
required to understand how to develop a piece of it. A lot of reliance on domain-specific 
languages. There are also a lot of ways to do the same thing (you can set up a control 
interface using React, Eclipse, QT, Motif, among others), and a lot of potential modules 
for “input output controllers” to be be based off, which is not only not very discoverable, 
but could also lead to a very heterogenous system without careful planning. It’s also 
difficult from the outside to figure out the relevant merits of different modules/extensions 
that purport to do the same thing, which means a lot of trial and error may be necessary. 
 
For reference, here is the tutorial on how to create an IOC (i.e. the piece that talks to 
some hardware): https://docs.epics-controls.org/projects/how-tos/en/latest/getting-
started/creating-ioc.html 
While it’s easy enough to follow the directions, it does not strike me as easy to 
understand.  

 
Comments on feasibility of meeting all requirements: 
The main concern here is the complexity of deployment and usability by non-experts.  In theory, 
this can be abstracted away by building some middle-ware on top of EPICS, but at that point, it 
seems like it defeats the point of using the framework. Maybe there already exist some libraries 
to do this but if so, it’s not obvious from the outside.  
 
Additional notes: 
EPICS is obviously capable of running CMB-S4 and very likely exceeds all other considered 
options in capability, if the right components are chosen.  But there is a significant cost even to 
implementers just to understand all the various components enough to start to make a 
reasonable design within EPICS. The fact that there are so many ways to do similar things is 
also a bit concerning, since the probably vary in capability, but there doesn’t seem to be an 
obvious way to find out ahead of time and a poor decision here can have a bad impact.  

Appendix D: Generic Control Program (GCP)  
DAQ Reviewers: Nathan Whitehorn 
Relevant documentation: 
 
“South Pole Telescope Software Systems: Control, Monitoring, and Data Acquisition” 
https://arxiv.org/abs/1210.4966 



 

 

Doc: CMBS4-doc-750-v1 
Date: 06/07/2021 
Status: Draft 
Page 24 of 29 

TDAQ/Control Trade Study 2021 

 

 
Requirements met: 
 
 
Requirements not met: 
 
 
Comments on feasibility of meeting all requirements: 
 
 
Additional notes: 

 

Appendix E: LSST  
DAQ Reviewers: Sasha Rahlin, Brian Koopman 
Relevant documentation: 
SPIE Proceedings - LSST control software component design (this seems to a bit outdated, but 
isn’t behind the SPIE paywall) 
Control Software Architecture Document - Control Software Architecture (the more useful of the 
two documents) 
https://github.com/lsst-ts - Entirely separate Github Organization found for telescope and site 
software! (Note: 261 repositories!) 
Observatory Control Documentation - https://obs-controls.lsst.io/  
Python Control Agent Base Object Code - https://github.com/lsst-ts/ts_salobj 
Python Control Agent Documentation - https://ts-salobj.lsst.io/ 
 
Requirements met: 
Control 

● Centralized control - Control is centralized on the “Service Abstraction Layer”, a 
communication middleware built on top of a Data Distribution Service (DDS), specifically 
OpenSplice by PrismTech. 

○ Some notes about OpenSplice: 
■ There seems to be a free and paid version of this 
■ The paid version comes from a company called AdLink - 

https://www.adlinktech.com/en/dds-community-software-evaluation.aspx 



 

 

Doc: CMBS4-doc-750-v1 
Date: 06/07/2021 
Status: Draft 
Page 25 of 29 

TDAQ/Control Trade Study 2021 

 

● Local and remote control - Local and Remote control called out as a requirement in 
section 2.7.1.1 - Access Control, and remote monitoring is called out in section 2.8.1.6 - 
Remote Monitoring of this requirements document. 

● Support Observer or scheduled commands - These are both possible, and there is a 
scheduler. 

● Telescope tracking 
● Support multiple nodes - This is supported, each component has its own Commandable 

SAL Components (CSC). And configuration of nodes is all managed centrally in a fully 
automated manner. 

● Receiver commanding - Should be possible with a separate CSC 
● Other commanding - Should be possible with a separate CSC 
● Scalability - Seems to scale to many nodes. Unsure about things like data output 

scalability. I think they write to FITS files, and have a high data rate, as their images are 
quite large, but data storage isn’t discussed in the documents about the control software. 

● User friendly - Seems like new CSC are Python objects with documentation. There are 
many examples available on github here: https://github.com/lsst-ts  

● Scheduling - There is a scheduler that can perform these actions. 
● Open source - all control code available at https://github.com/lsst-ts  
● Code language - Python and C++ are options. Labview and Java are also options (so 

I’ve noted that in “requirements not met”) 
● User access control - This is managed by allow lists that each CSC checks before 

sending data on the network, and it won’t send unless it’s allowed to. 
● Modular 
● Messaging layer - Uses PrismTech OpenSplice for messaging layer 

DAQ 
● Data rate - It’s high bandwidth fiber between sites, so I imagine this would be sufficient, 

but no numbers are given. 
● Data format - Seems to be FITS file based: https://github.com/lsst-ts/pythonFitsfile  
● Error trace/logs - every action is logged 
● Network - 10 Gbps to recording computers. I imagine this is true, as fiber connects the 

networks 
● Network - Use TCP/IP, this is true 
● Network - Domains for high and low-speed DAQ may be segregated. I believe this is 

true 
● Synchronicity - Main part of code uses python’s asyncio to support asynchronous data 

collection 
● Meta-data - I think metadata could easily be captured by their Engineering and Facility 

Database 
Monitoring and Alarms 

● Health & Monitoring real time monitoring - Yes, all provided via the LSST Operators 
Visualization Environment 



 

 

Doc: CMBS4-doc-750-v1 
Date: 06/07/2021 
Status: Draft 
Page 26 of 29 

TDAQ/Control Trade Study 2021 

 

● Health & Monitoring remote monitoring - Yes, provided by the same real time monitoring 
interface 

● Alarms - There is a “watcher” component that sends alerts. The goal being that alarm 
rules are easy to write and understand 

● Alarms (hierarchical severity) - The system does seem to handle this. Description of the 
watcher system includes details on what happens if alarms occur rapidly after 
acknowledgements, and other scenarios. All errors must be acknowledged, but in certain 
situations can be suppressed if they are not resolved yet, but still need to be re-
acknowledged. 

 
Requirements not met: 
Control 

● Code language - Beyond Python and C++ there are options for Labview and Java. So it 
is not “limited to a few well-known options” as described in the requirement. 

● Broad hardware/computer applicability - Not sure on hardware recommendations, 
however this python SalObj (and thus ADLink OpenSplice) installation page specifies 
that as of December 2020, only CentOS 7 is supported. 

 
Requirements unsure of: 
Control 

● Commonality - It’s not clear to me that this deployment is used in individual labs. 
Perhaps individual components are, or software at a lower level that is used in 
components. 

● Firmware-free 
● All hardware interfaces 
● Downtime/uptime - not sure how to assess this from documentation available 
● Verified to work at scale - Seems likely it would scale, but unconfirmed 

DAQ 
● Data description - Data format isn’t discussed in detail, though every action is logged to 

a database. I imagine this is met, just can’t say for sure 
● Data loss - unsure how to assess loss based on limited documents 
● Timing - not discussed in control docs 
● Time stamp - not discussed in control docs 
● Timing (requirement for phase noise of XX dBc/Hz) - not discussed in docs I found 

Monitoring and Alarms 
● Health and monitoring - Not sure of a few of these, how quickly updates are coming in (if 

faster than 5s, how far back historical data goes, how many fields it can handle, or it’s 
ease of configurability. 

Comments on feasibility of meeting all requirements: 



 

 

Doc: CMBS4-doc-750-v1 
Date: 06/07/2021 
Status: Draft 
Page 27 of 29 

TDAQ/Control Trade Study 2021 

 

A lot of the architectural design features are similar to other control systems being considered -- 
there’s some middleware layer that does the message passing and communication. Separate 
“agents” are developed for individual hardware and added to the system by communicating over 
this middle layer. It does seem like most of these “agent” components are written in Python.  
 
There are several aspects that are unclear to me though, listed in the “Requirements unsure of” 
section. One being the commonality, I’m not sure how much of this is being used in individual 
labs. Setup seems quite involved at a first glance. Deployment at the site is entirely done 
through a CI/CD pipeline. Perhaps the integration testing aspect of this fills the role of running 
elements in the lab for testing before deployment, though this is speculation on my part. 
 
 
Additional notes: 
Heavily Java based, based on EXO software   
 

Appendix F: Simons Observatory OCS  
DAQ Reviewers: Cosmin Deaconu, Abby Crites 
Relevant documentation: 
https://arxiv.org/abs/2012.10345 
 
Requirements met: 
Control 

● Open source - 
○  yes, easy to install, with clear instructions and also Docker options (does not play 

well with Podman, but now Docker supports cgroupsV2 so mostly a non-issue)  
○ Extensive documentation on installation, using and creating agents 

● Centralized control 
● Local or remote control 
● Support Observer or scheduled commands 
● Telescope tracking 
● Support multiple modes 
● Receiver commanding 
● Other' commanding 
● Refrigerator commanding 
● Scalability -- High data rates tested by Cosmin 

○ Verified to work at scale 
○ 60,000 bolos for SO 

● Commonality? 



 

 

Doc: CMBS4-doc-750-v1 
Date: 06/07/2021 
Status: Draft 
Page 28 of 29 

TDAQ/Control Trade Study 2021 

 

● User friendly” 
○ Yes, test code can be written for hardware by non-DAQ expert  

● Scheduling 
● Broad hardware/computer applicability: yes 
● Distributions 
● Code language - Python (usually twisted dialect for clients).  In principle, it is possible to 

expand support to write clients in C++ or JavaScript (through other autobahn libraries).  
● User access control 
● Deliverable 
● Firmware-free - yes 
● Telescope interface - ACU agent pushed to the OCS feed 
● All hardware interfaces -- yes,  
● Messaging layer? 
● Downtime/uptime 
● Modular -- yes, ocs Agents and ocs Clients (easy to add agents for new hardware) 
● Monitoring: live monitoring of housekeeping data and alerting, Grafana 

DAQ 
● Data Description 
● Data Rate 
● Data Loss 
● Data format - SPT3G data format, serializable frames  
● Timing 
● Time Stamp 
● Health & Monitoring - OCSweb 
● Alarms 
● Error trace/logs 
● Network 
● Synchronicity 
● Health and Monitoring 
● Timing 
● Monitoring 
● Meta-data 

 
Requirements not met: 
None 

 
Comments on feasibility of meeting all requirements: 

 
Additional notes: 



 

 

Doc: CMBS4-doc-750-v1 
Date: 06/07/2021 
Status: Draft 
Page 29 of 29 

TDAQ/Control Trade Study 2021 

 

 

Appendix G: Alternative Commercial Solutions  
DAQ Reviewers: Nathan Whitehorn, John Joseph, Ryan Herbst 
 
LZ (ignition)  
https://inductiveautomation.com/scada-software/ 
https://inductiveautomation.com/pricing/ignition 
Notes from CD: Completely java based. Scripting with jython (2.5?)…  


