Cosmological constraints on (massive) light relics: current status 2023 Summer Collaboration Meeting - 2 Aug 2023 Martina Gerbino - INFN Ferrara

Beyond Standard Model

What next in neutrino cosmology

The new generation of cosmological surveys is approaching: Simons Observatory, Euclid, LiteBIRD, CMB-S4, DESI, Rubin, SPHEREX, SKA ... **Does it mean that we are moving:**

Towards the first detection of the neutrino mass scale?

 $\sigma(\Sigma m_{\nu}) = 0.02 \,\mathrm{eV}$

2) Towards the first probe of the physics of neutrino decoupling, and of **BSM content at very early times?**

$$\sigma(N_{\rm eff}) = 0.03$$

		Neutrino
$T \sim 1 \mathrm{MeV}$		
Coupled	Weak int. rate = Hubble rate	Decouple and not cluster
Scale factor 'a' increases		

Martina Gerbino

cosmology tivistic Non-Relativistic $T \sim m_{\nu}$

d ing

Non-relativistic transition

Decoupled and clustering at large scales

Temperature 'T' increases

Martina Gerbino

BSM neutrinos?

What if they are not what we think? (or: how sensitive are we to standard assumptions?) $T \sim m_{\nu}$

transition

Non-relativistic

Decoupled and clustering at large scales?

Thanks to many collaborators!

- **Results shown in the next slides are in collaboration with several amazing people:**
 - Junior: L. Caloni (UniFE), P. Carenza (Stockholm), F. Forastieri (UniFE), G. Lucente (UniBA -> SLAC)
 - Staff: T. Brinckmann (UniFE), M. Lattanzi (INFN FE), M. Giannotti (Miami), L. Visinelli (Shanghai)
- and E. Grohs (Victoria and NC U) and all the co-authors of arXiv:2203.07377 (Snowmass contribution on Synergy between lab and cosmo probes)

Neutrino magnetic moment

If neutrinos have a magnetic moment, e.m. interactions in the plasma can flip the ν helicity

A population of right-handed neutrinos is created from a purely left-handed initial ensemble

Neutrino magnetic moment

$$\mu$$
 < 4.6 x 10⁻¹² μ_b (Planck+BAO)
 μ < 1.7 x10⁻¹² μ_b (Planck+BBN)
($T_{max} \ge 100 \text{ GeV}$)
Carenza+ (incl ML, arXiv:2211.0432)

Compare with μ < 6 x 10⁻¹¹ μ_b (cosmo, EERS87, assumes th. eq) μ < 2.7 x 10⁻¹² μ_{b} (cosmo, Li&Xu arXiv:2211.04669) (assumes th. eq) μ < 6.4 x 10⁻¹¹ μ_{b} (lab, XENONnT arXiv:2207:11330) μ < 1.2 x 10⁻¹² μ_b (astro, Capozzi&Raffelt PRD2020)

Martina Gerbino

CMB experiments can provide competitive constraints on the neutrino magnetic moment

Neutrino non-standard interactions

$$\mathcal{L} \supset h_{ij}\bar{\nu}_i^c\nu_j\phi + g_{ij}\bar{\nu}_i^c\gamma_5\nu$$

 2.0×10^{9}

 1.5×10^{9} **Collisional processes** suppress stress and affect the perturbation evolution. 1.0×10^{9} **Neutrino free-streaming** altered non-trivially. 5.0×10^8

See also Berryman+(incl.MG) 2023, Snowmass contribution

Martina Gerbino

Neutrino non-standard interactions

Martina Gerbino

 $\Gamma_{\rm NSI} \propto g_{\rm eff}^4 T$

 $g_{\rm eff}^4 < 1.64 \times 10^{-27}$

Planck LCDM+NSI Forastieri+, 2019

Detailed comparison is more complicated due to physics scenario and evolution equations

Martina Gerbino

Conclusions?

- Massive light relics: very similar phenomenology (contribution to energy density). How to disentangle?
- Enhanced sensitivity of future surveys demands enhanced accuracy: is it possible and feasible to achieve?
- Entering the synergy epoch: CMB alone can do a lot for BSM particle physics; can do much more when combined with LSS; can do even more when cosmology meets astro&lab searches

