

Dark Molecular Gas:

And Other Synergies Between Dust and Gas Tracers

Michael Busch (he/him) NSF Fellow, UCSD

CMB-S4 Summer Collaboration Meeting – Summer 2023

Outline

- Intro to Dark Molecular Gas
 Inferred by 21-cm HI, CO & CMB dust
 OH observations reveal CO-dark gas
- Brief reminder on Zeeman effect of Spectral Lines

The Multi-Phase Interstellar Medium (ISM)

Atomic Gas is the reservoir for Molecular Gas. Traced by the HI 21cm Line

- Molecules (H2, OH, CO, HCO+, HCN, etc) form from atoms... cool gas and regulates star formation
- UV flux from hot, young stars ionize gas.

All components needed to understand galaxy formation and structure. *Figures fror*

Figures from UMD Astro Webpage.

CO(J=1-0) as our workhorse tracer molecule for Molecular Gas (H2)

Why do we use CO(J=1-0)?

- Molecular Hydrogen (H2) is practically invisible in cold molecular clouds.
 - Need absorption measurements or fluorescence or hot gas.
- Almost singular reason CO is *really* bright so it's easy to observe!
- It's also abundant relative to H2 stars make a lot of carbon and oxygen!

Limitations of CO as a bulk Molecular Gas Tracer

- Chemistry:
 - Efficient *formation* of CO (a *heavy* molecule) requires first formation of *lighter* molecules (e.g. where one component is H: OH, CH).
 - *Photodissociation* of CO happens rapidly without shielding in diffuse gas. (Av <1)
- Physics:
 - CO is not collisionally excited in diffuse gas (n < 500 cm[^]-3)
 - $\circ \quad \text{Spontaneous emission rate is large} \rightarrow \text{bright} \\ \text{but needs excitation to balance out.}$
- Observational:
 - The conversion between CO brightness and H2 ("X" factor) is highly uncertain, and varies with environment (e.g. metallicity).

The "Dark Gas" Observational Mystery

The "Dark Gas" Observational Mystery

Open Questions on Dark Gas

- What is it? (Mostly solved? H2!)
 - Is it Saturated Atomic Hydrogen, or Molecular Hydrogen?
 - Murray et al 2018 (and others), high resolution HI data showed it's primarily not atomic.
 - $\circ \qquad \text{The rest must be molecular.}$
- How much? (Depends on who you ask...)
 - Wrong baryonic mass estimate of galaxy?
 - C+ says 30%, Gamma Rays say 100-200%, more H2.
- Where? (Work in progress!)
 - Very large volume.
 - Phase distribution very uncertain, Gamma rays and dust lack radial velocity measurements (need a spectral line!).
- What is the physical environment? (Diffuse, hot?)
 - How does it influence star formation rate/history in the regions without CO?

Excess IR Dust Emission -- dust correlates with gas.

Planck Collaboration et al. (2011), 536, A19

Blind 18cm OH Surveys with the Green Bank Telescope

(2015-)

The 'Onion' Model and 'PDR' Schematic: Volume

Figure Adapted from Li 2015, who adapted it from Tielens 2005.

OH has shown abundant "CO-Dark" Molecular Gas

Test Case: The Chamaeleon Molecular Cloud

- Giant molecular clouds, local molecular clouds and high latitude molecular clouds are all great targets for CMBS4!
- Why? Primarily:
 - High angular resolution (<1')
 - Wide FOV and deep sensitivity.
 - CMB signal is faint
- Many complementary datasets exist/will exist, primarily:
 - 21-cm HI (GASKAP, MeerKAT, GMRT, SKA)
 - CO (NANTEN, ALMA, IRAM 30m)
 - Gamma Rays (Fermi-LAT)

(0th Order) First, measure:

$$\tau_{\nu} = \frac{I_{\nu}}{B_{\nu}(T)} = \sigma_{\nu} N_{\rm H} = \kappa_0 \left(\frac{\nu}{\nu_0}\right)^{\beta} R_{\rm DG} \mu_{\rm H} N_{\rm H}$$

Dust Optical Depth ~ N(H) (we could also use dust radiance or extinction)

And since:

$$N_{\rm H} = N_{\rm HI} + 2N_{\rm H_2}$$

Use an HI map, then:

$$N_{\rm H_2} = (N_{\rm H} - N_{\rm HI})/2$$

Planck Collaboration, Fermi Collaboration, Ade, P. A. R., Aghanim, N., Aniano, G., Arnaud, M., & Ashdown, M. 2015, A&A, 582, A31

Test Case: The Chamaeleon Molecular Cloud

- Dark Gas mass ~ double CO-bright gas mass
- The Dark Gas is primarily H2.
- Many open questions:
 - Variation with?:
 - Dust temp
 - Grain size
 - CO "X" Factor
 - Chemistry?
 - "Clumpiness"
- What are the properties *globally*?

Liszt, Gerin and Grenier A&A, 627, 5, 2019

Blue (HI), Red (CO), Teal (Dark Neutral Medium)

Future Consideration: Phased Array Feeds will enable extensive sensitive OH mapping!

24 hour OH mapping proposal for one side of Cham. (with a single beam this would take > 200 hours!)

CryoPAF Science Presenation from Anita Petzler (CSIRO)

Briefly, Zeeman Splitting of Spectral Lines

- Zeeman Splitting of a spectral line is a very reliable method to measure magnetic field strength.
 - In Line-of-Sight!
 - Not very many detections (HI, CH, OH)...
 - Incredibly difficult measurement.
- CMB Dust Data can obtain estimate of plane of sky B field (DCF method?) & B orientation data.
- 3D Magnetic Field strength information is *possible* in the future!

Large-Scale OH Zeeman Splitting Survey?

- However, with new PAFs (>40 beams) (on both GBT and Parkes):
 - And a lot of work to characterize the beam squint, polarization leakage, beam response...
 - Hundreds of hours of integration time...
- We can conduct a "shallow" (2 hour x pointing) survey for N(OH) in Molecular Clouds
 - Then conduct a "deep" (100 hours) survey for Zeeman splitting towards high N(OH) in many clouds.
 - Map of 3D magnetic field strength?!
 - $\circ \rightarrow$ Science? (profit???)
- This timeline may actually align with the timeline of CMBS4...

CryoPAF Science Presenation from Anita Petzler (CSIRO)

Conclusions

- CMB Dust Data can trace total (atomic + molecular) Hydrogen column in our Galaxy.
 - This is super interesting and very useful!
 - Many open problems in tracing 'CO-Dark' Molecular Gas, Chemistry and dust evolution.
 - CMB S4 dust data will be: 1) Higher resolution (<1' from 10') 2) More sensitive (tradeoff, lower freq-not in space)
- Planck + Fermi-LAT already did a test case study towards Chamaeleon.
 - We should this type of work more.
 - Esp. with an eye towards collecting many gas tracers from complementary telescopes (OH, CH, CO, HCO+, HI)
 - The 'CO-Dark' multiphase medium needs a lot of work!
- In ~5 years it may be possible to routinely map clouds in 18cm OH or 9cm CH with a PAF on a single-dish telescope, allowing for maps of LOS B field across clouds to be compared to Plane-of-Sky B field from CMB dust data.

Thanks!

