Polarized Dust Emission \times Neutral Hydrogen

George Halal Stanford University CMB-S4 Collaboration Meeting August 2, 2023

1. BICEP / *Keck* XVI: Characterizing Dust Polarization Through Correlations with Neutral Hydrogen (BICEP/Keck Collaboration et al., *ApJ*, 2023)

2. Filamentary Dust Polarization and the Morphology of Neutral Hydrogen Structures

(Halal, Clark, Cukierman, Beck, & Kuo, submitted to ApJ, 2023)

Neutral Hydrogen (HI)

well-mixed with dust + filamentary + aligned with magnetic field + 3D

Rolling Hough Transform

HI intensity \rightarrow HI filaments \rightarrow Magnetic field orientation \rightarrow HI-based polarization template

Clark, et al. (2014) Clark & Hensley (2019)

Background: 1st moment map of velocity **Texture**: magnetic field orientation inferred by HI filaments

Polarized emission in velocity components

BICEP/Keck Collaboration et al., *ApJ*, 2023

- Detection in the Galactic component of HI \rightarrow down to 95 GHz $\sim 7\sigma$ in BB, $\sim 15\sigma$ in EE, and $\sim 16\sigma$ in EE+BB
- No detection in Magellanic Stream I

No evidence for decorrelation in BICEP

- No evidence for LOS frequency decorrelation from inclusion of IVC in LOS sum
- Fit an SED:

no decorrelation between filaments and total dust

BICEP/Keck Collaboration et al., *ApJ*, 2023

- ----- Total Dust Component EE+BB
- Filamentary Dust Component EE+BB
- ----- Total Dust Component BB
 - Filamentary Dust Component BB

Dust sensitivity of different instruments

BICEP/Keck Collaboration et al., *ApJ*, 2023

	BB	EE	BB + EE
BICEP3 95 GHz	4.53	1.22	4.72
Planck 143 GHz	0.05	0.72	0.12
BICEP2/Keck 150 GHz	5.31	2.43	5.98
Planck 217 GHz	3.50	2.37	4.02
Keck 220 GHz	5.82	7.13	9.26
Planck 353 GHz	3.18	7.99	8.59

Statistical significance of detection of HI-based polarization template in units of standard deviations

New RHT implementation using spherical harmonic convolutions

Halal, Clark, Cukierman, Beck, & Kuo, submitted to *ApJ*, 2023

Explore filament morphologies

Halal, Clark, Cukierman, Beck, & Kuo, submitted to *ApJ*, 2023

Thinnest resolved filaments most informative for magnetic field modeling

Also: $\sim 10\%$ enhancement in *B*-mode correlation with higher resolution HI data

Morphologies producing TB, EB > 0

Halal, Clark, Cukierman, Beck, & Kuo, submitted to *ApJ*, 2023

Even under assumption of local B-field alignment

B modes mostly affected by: Filament topologies wrt one another *E* modes mostly sensitive to: Individual filament shapes

Conclusions

- Separate emission into velocity components
 - Detection in the Galactic component
 - No detection in Magellanic Stream I
- No evidence for decorrelation from inclusion of IVC or between filaments and total dust in the BICEP patch
- Quantify dust sensitivity of different instruments

- Spherical RHT implementation
- Thinnest resolved filaments most informative for magnetic field modeling
- Morphologies producing TB, EB > 0
- **B modes** mostly affected by: Filament topologies+polarized intensities wrt one another

E modes mostly sensitive to: Individual filament shapes

BACKUP

Polarized emission in velocity components

BICEP/Keck Collaboration et al., *ApJ*, 2023

- Detection in the Galactic component of HI \rightarrow down to 95 GHz ~7 σ in BB, ~15 σ in EE, and ~16 σ in EE+BB
- No detection in Magellanic Stream I

Line-of-sight (LOS) Frequency Decorrelation

- Caused by dust components along the same line-of-sight with different polarization angles and SEDs
- We test for evidence of this phenomenon in the BICEP/*Keck* region between the LVC and IVC components and between the filamentary and total dust components

Inclusion of IVCs in the Line-of-Sight Sum

Detection statistical significance in units of equivalent Gaussian σ 's:

IVC emission integrated over BICEP/*Keck* region ~25% of V1 column in intensity and ~10% in polarized intensity

No change in detection statistical significance

 \rightarrow No evidence for LOS frequency decorrelation due to inclusion of IVC component in BK patch

	range for $LVCs + IVCs$	range for LVCs
BB	6.7	6.8
EE	14.6	14.3
BB + EE	16.1	16.1

Individual Instrument Contributions

Detection statistical significance in units of equivalent Gaussian σ 's:

	BB	EE	BB + EE
BICEP3 95 GHz	4.53	1.22	4.72
Planck 143 GHz	0.05	0.72	0.12
BICEP2/Keck 150 GHz	5.31	2.43	5.98
Planck 217 GHz	3.50	2.37	4.02
Keck 220 GHz	5.82	7.13	9.26
Planck 353 GHz	3.18	7.99	8.59

- Detection at 95 GHz provides a low frequency lever arm for the dust SED
- At lower frequencies, in *E* modes, we are limited by the sample variance of the CMB

- Increase correlation with BICEP/Keck and Planck by $\sim 2\sigma$ in BB and $\sim 3\sigma$ in EE and EE+BB
- Detection of dust polarization in the Galactic component of HI at $\sim 7\sigma$ in *BB*, $\sim 15\sigma$ in *EE*, and $\sim 16\sigma$ in *EE*+*BB* \rightarrow down to 95 GHz
- No detection of dust polarization in Magellanic Stream I
- Polarized dust restricted to LVC range → No LOS frequency decorrelation from the inclusion of the IVC component in the BICEP/*Keck* region
- SED through correlations with HI across frequencies $\rightarrow 1.54 \pm 0.13 \rightarrow$ consistent with BK18 \rightarrow no evidence for decorrelation between filamentary and total dust in BICEP/*Keck* region

Methodology

• Sims:

$$\tilde{m}_{\nu}(\hat{\mathbf{n}}, a, k, \beta) = \tilde{m}_{\nu}^{\text{ACDM}}(\hat{\mathbf{n}}) + m_{\nu}^{\text{n}}(\hat{\mathbf{n}}) + a \cdot f_{\nu}(\beta^{\text{GD}}) \cdot \tilde{m}_{\nu}^{\text{GD}}(\hat{\mathbf{n}}) + k \cdot f_{\nu}(\beta^{\text{HI}}) \cdot \tilde{m}_{\nu}^{\text{HI}}(\hat{\mathbf{n}})$$
Noise
Gaussian dust

MBR scaling

• Observables:

 $\left\langle \tilde{m}_{\nu}(a,k,\beta^{\mathrm{HI}}) \ \tilde{m}_{\nu}^{\mathrm{HI}} \right\rangle_{X} = \left\langle \tilde{m}_{\nu}^{\Lambda\mathrm{CDM}} \ \tilde{m}_{\nu}^{\mathrm{HI}} \right\rangle_{X} + \left\langle m_{\nu}^{\mathrm{n}} \ \tilde{m}_{\nu}^{\mathrm{HI}} \right\rangle_{X} + a \cdot f_{\nu}(\beta^{\mathrm{GD}}) \cdot \left\langle \tilde{m}_{\nu}^{\mathrm{GD}} \ \tilde{m}_{\nu}^{\mathrm{HI}} \right\rangle_{X} + k \cdot f_{\nu}(\beta^{\mathrm{HI}}) \cdot \left\langle \tilde{m}_{\nu}^{\mathrm{HI}} \ \tilde{m}_{\nu}^{\mathrm{HI}} \right\rangle_{X}$

vector across

• Likelihood: χ, ν, ℓ $\chi^{2}(a, k, \beta) \equiv \left(\mathbf{D}^{\text{real}} - \overline{\mathbf{D}}(a, k, \beta)\right)^{T} \mathbf{M}^{-1} \left(\mathbf{D}^{\text{real}} - \overline{\mathbf{D}}(a, k, \beta)\right)$

• Detection statistical significance:

Null hypothesis added benefit of HI $\chi^2_{\text{GD}}(a) \equiv \chi^2(a, 0, 0) \longrightarrow \Delta \chi^2 = \hat{\chi}^2_{\text{GD}} - \hat{\chi}^2 \longrightarrow \text{PTE (p-value)} \longrightarrow \text{ inv. normal} \longrightarrow \sigma$

Polarized Intensity

- Results insensitive to RHT parameters, as long as in regime where longer structures are selected
- *BB* correlation breaks down when less filamentary structure is admitted to the model
- Further explorations of physical implications of this parameter space in a separate paper

20

RHT Parameter Tuning

 $\begin{array}{ll} D_{\rm W} = 75' & D_{\rm W} = 135' \\ \theta_{\rm FWHM} = 30' & \theta_{\rm FWHM} = 4' \\ Z = 0.7 & Z = 0.75 \end{array}$

Detection statistical significance in units of equivalent Gaussian σ 's:

	Z = 0.7	Z = 0.75
	default	best
BB	4.7	6.7
EE	12.3	14.6
BB + EE	12.9	16.1
	(used in	-
	Clark &	
	Hensley	

2019

Uncertainties (from fits of 499 realizations with fixed inputs)

Mean consistent with input \rightarrow fits are unbiased

Best-Fit Observables

Cross-correlations with the real data highly exceed the spurious correlations across all frequencies

Posteriors (Uniform Priors, χ^2 Likelihood)

Fitting HI auto spectra to cross spectra between HI and dust across frequencies

- k: more standard deviations from 0
 → more detection (value folds in
 HI normalization)
- $\beta_{\rm HI}$: SED spectral index. *E* and *B* modes are sourced by the same filaments in HI template

Change in SED with Frequency Channel Omissions

BK 95, 150, & 220
 BK 150 & 220 & Planck 353
 Planck 143, 217, & 353
 All

- Planck's 143 and 217 GHz bands are not very sensitive to filamentary dust polarization when restricted to the BICEP/Keck region as compared to BICEP/Keck's 150 and 220 GHz bands \rightarrow Planck-only case has a wider posterior that is shifted slightly towards higher values of $\beta_{\rm HI}$
- The four posteriors are statistically consistent with each other to within 2σ

Correlation Ratios

- Auto spectra in denominator contain noise biases → For the purposes of forecasting sensitivity to r, we wish to retain the diluting effects of noise
- BICEP/*Keck* bands correlate better in *B* modes than *Planck* bands of similar frequencies in this region (consistent with BK18)

Cross Spectra

• BICEP/*Keck* bands correlate better in *B* modes than *Planck* bands of similar frequencies in this region (consistent with BK18)

COMMANDER Dust 353 GHz, EE
Planck 353 GHz, EE
COMMANDER Dust 353 GHz, BB
Planck 353 GHz, BB

Higher-resolution HI

 $\sim 10\%$ enhancement in *B*-mode correlation

 HI4PI, EE
 GALFA-HI, EE
 HI4PI, BB
 GALFA-HI, BB

Halal, Clark, Cukierman, Beck, & Kuo, submitted to *ApJ*, 2023

Compare outputs to Hessian-based method

Halal, Clark, Cukierman, Beck, & Kuo, submitted to *ApJ*, 2023

200

400

Multipole moment ℓ

200

400

Multipole moment ℓ

200

400

Multipole moment ℓ

Improvements to template construction

Halal, Clark, Cukierman, Beck, & Kuo, submitted to *ApJ*, 2023

