

CMB lensing cross-correlations on large scales: a clean probe of primordial non-Gaussianity with DESI quasars and Planck lensing

DARK ENERGY SPECTROSCOPIC INSTRUMENT

U.S. Department of Energy Office of Science

Science & Technology Facilities Council

Thanks to our sponsors and 69 Participating Institutions!

CMB lensing cross-correlation and primordial non-Gaussianity

Primordial non-Gaussianity creates scale-dependent galaxy bias

$$\Delta b(k) = b_{\phi} \frac{f_{\rm NL}}{\alpha(k)} = 2(b-p) f_{\rm NL} \frac{\delta_c}{\alpha(k)}$$
 $\alpha(k) \propto k^2$

- CMB lensing cross-correlation is a much cleaner alternative to the galaxy autocorrelation
 - ➤ No noise bias: Survey-specific systematics increase covariance but don't add signal (if uncorrelated between galaxies & CMB)
 - ➤ CMB lensing kernel pushes to higher redshift, where the PNG signal is larger and more large-scale modes are accessible

Early DESI data: quasar targets and spectroscopic dN/dz

- ➤ DESI 5 year main survey started in May 2021
- Spectroscopic data only partially covers sky
 - But we need wide area for PNG constraints
- Solution: DESI quasar targets across entire footprint (14700 deg²) + spectroscopic dN/dz measurement from early DESI data
 - ➤ DESI Y5 will do better: analysis of spectroscopic (Y1) quasar x CMB lensing in prep

Early DESI data: quasar targets and spectroscopic dN/dz

- The price we pay: 18% of main DESI quasar targets are "unclassified redshifts"
 - Unknown dN/dz, stellar contamination fraction
- Reduce stellar contamination and redshift failure rate by removing faint quasar targets with colors more likely to be stars
- ➤ Trade number density (~2x drop) against purity (down to 4% failure rate)

Mitigating imaging systematics

- Quasar targets are faint sources near the detection threshold of imaging surveys
 - Leads to spurious correlations with survey properties, Galactic extinction, stellar density (like CMB foregrounds)
- Linearly regress quasar density against imaging templates to explicitly remove these correlations and reduce excess large-scale power by ~5x

Mitigating imaging systematics

- Quasar targets are faint sources near the detection threshold of imaging surveys
 - Leads to spurious correlations with survey properties, Galactic extinction, stellar density (like CMB foregrounds)
- ➤ Linearly regress quasar density against imaging templates to explicitly remove these correlations and reduce excess large-scale power by ~5x

Testing on contaminated mocks

- Overfitting is a potential issue: regression may remove real cosmological signal!
 - ➤ Test *linear* vs *random forest* mitigation on contaminated mocks
 - Linear regression recovers $C_\ell^{\kappa g}$ well on all scales
 - > Random Forest method is too flexible and reduces $C_\ell^{\kappa g}$ by >2x on large scales

Testing on contaminated mocks

End-to-end test on contaminated mocks: recovers true input f_{NL}

PNG constraints

- ightharpoonup Results from 4 regions are consistent, with decent $\chi^2(p=0.15)$
- ➤ Combined constraint: $f_{\rm NL} = -26^{+45}_{-40}$
- Error consistent with Fisher forecast given extra noise from residual systematics

Conclusions and future work

- Despite strong excess angular power in photometric quasar sample, we can nevertheless constrain PNG using CMB lensing cross-correlation
 - ➤ No evidence for any correlated systematics! Crosscorrelation much cleaner & easier to deal with than auto
- > Slightly weaker PNG constraints than BOSS/eBOSS P(k) (σ_{fNL} ~20-30): limited by excess noise in quasar auto-spectrum at low ℓ
- ➤ CMB lensing x spectroscopic quasars has cleaner large-scale power and will likely allow us to use the full sample (2x higher number density)
 - Work in progress with DESI Y1 QSO x CMB lensing