

Established by the European Commission

unWISE galaxies x CMB Lensing

new results from unWISE x Planck Lensing and towards unWISE x ACT DR6 Lensing

Gerrit S. Farren

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK

work with Alex Krolewski, Blake Sherwin, Simone Ferraro, Niall MacCrann, Frank Qu and others

CMB-S4 collaboration meeting, August 1 2023, Stanford

Intro

What we plan to do

• Measure (primarily) S_8 using galaxy - CMB lensing cross-correlations

What data we are using

- using unWISE catalog
- CMB lensing reconstructions from Planck and (soon) from ACT

Why this is interesting

- long standing S_8 tension
- previously unWISE×Planck lensing found low S₈ (Krolewski et al., 2021)

How we are doing it

• model C_{ℓ}^{gg} and $C_{\ell}^{\kappa g}$ to break b_g - σ_8 degeneracy

S_8 tension

Two possible resolutions?

- scale dependent suppression of power
 - non-linear structure growth
 - (stronger than expected) baryon feedback
 - ...
- redshift dependent suppression of power
 - dark energy evolution

•

Image Credit: Abdalla et al. (2022)

Introduction to CMB lensing

Lensing probes projected matter density

 $\phi \sim \int_0^{\chi_\star} W_\phi(\chi) \delta_m(\hat{n}\chi) d\chi$

Lensing reconstruction

G. Farren: unWISE $g \times \text{CMB}$ Lensing κ

Image Credit: Planck Collaboration *et al.* (2020)

Cross-correlation with galaxies

Planck or ACT

Galaxy number density

here unWISE

The cross-correlation

Complementary probes of large scale structure

The unWISE samples

- $\bullet\,$ galaxies from the WISE survey
- including 2 years of post-cryogenic observations (at 3.4 and 4.6 $\mu \rm{m})$
- >500 million galaxies
- $0 \lesssim z \lesssim 2$
- color selection for two samples

sample	Ī	n
Blue	0.6	\sim 3400
Green	1.1	$\sim \! 1800$

Previous work on Planck lensing x unWISE

 $\implies \sim 2.4\sigma$ tension with Planck 2pt

G. Farren: unWISE $g \times \text{CMB}$ Lensing κ

0.90

	Impact on S_8
Monte Carlo lensing norm correction	$+0.6\sigma$
modelling improvements	-0.5σ
Systematics weighting	$+0.4\sigma$
Additional spectroscopic data	$+0.8\sigma$
use of <i>Planck</i> PR4 lensing reconstruction	$+0.2\sigma$
PCA based dN/dz marginalisation	-0.2σ $+$ ${\sim}15\%$ wider posteriors
fid. cosmo. correction	change in degeneracy directions
Total	$+1.3\sigma+{\sim}15\%$ wider posteriors

Re-analysis of unWISE x Planck lensing

ACT lensing reconstruction

cross-spectra unWISE x ACT DR6 lensing

Testing for systematic contamination

And many more ...

- different reconstruction and bias mitigation strategies (using CMB temperature/polarisation only, deprojecting CIB contamination, ...)
- various different masks (northern vs southern galactic cap, low vs higher ecliptic latitude, ...)
 G. Farren: unWISE g × CMB Lensing κ

Testing for systematic contamination (continued)

Tests on simulations

- \bullet extragalactic foreground maps from WebSky simulations
- galaxy sample generated using unWISE HOD on WeBSKy halo catalog
- measure lensing signal induced by foregrounds

Stay tuned for unWISE x ACT DR6 lensing cosmology

- comparable precision to Planck
- have recently unblinded
- results are forthcoming

G. Farren: unWISE $g \times \text{CMB}$ Lensing κ

- will combined with other probes (including $C_{\ell}^{\kappa\kappa}$ and $C_{\ell}^{TT} + C_{\ell}^{TE}$, etc)
- probe extended models beyond vanilla ACDM (e.g. $\sum m_{
 u}$)
- will get further improved redshifts with DESI
- improved modelling using simulation derived emulators (e.g. Hybrid EFT; see DeRose *et al.*, 2023)
- (eventually) Simons Observatory Lensing \times e.g. LSST

Thank you!

Aside: Detected gg κ -bispectrum

Very preliminary!

- use small scales and halo model to constrain HOD parameter
- use large scales and LPT model to constrain higher order biases

G. Farren: unWISE $g \times \text{CMB}$ Lensing κ

The effect of CMB lensing

• observed field = unlensed field evaluated at a different position

$$ilde{\Theta}(oldsymbol{x}) = \Theta_0(oldsymbol{\hat{n}} + oldsymbol{
abla} \phi)$$

- small-scale ($\mathcal{O}(\text{arc-minute})$) deflections described by a deflection potential ϕ
- coherent over larger, $\mathcal{O}(degree)$, scales
- lensing convergence $\kappa = -\frac{1}{2} \nabla^2 \phi$
- $\phi \sim \int_0^{\chi_\star} W_\phi(\chi) \delta_m(\hat{\boldsymbol{n}}\chi) d\chi$

The effect of CMB lensing

• observed field = unlensed field evaluated at a different position

$$ilde{\Theta}(oldsymbol{x}) = \Theta_0(oldsymbol{\hat{n}} + oldsymbol{
abla} \phi)$$

- small-scale ($\mathcal{O}(\text{arc-minute})$) deflections described by a deflection potential ϕ
- coherent over larger, $\mathcal{O}(degree)$, scales
- lensing convergence $\kappa = -\frac{1}{2} \nabla^2 \phi$
- $\phi \sim \int_0^{\chi_\star} W_\phi(\chi) \delta_m(\hat{\boldsymbol{n}}\chi) d\chi$

CMB lensing reconstruction

• the unlensed CMB is statistically isotropic

 $\langle \Theta_0(\mathbf{I})\Theta_0(\mathbf{I}-\mathbf{L})\rangle = \delta(\mathbf{L})C_L$

lensing breaks isotropy and couples different modes

$$\langle \tilde{\Theta}(\mathbf{I}) \tilde{\Theta}(\mathbf{I} - \mathbf{L}) \rangle - \delta(\mathbf{L}) C_{L} \sim \phi(\mathbf{L})$$

• estimate lensing signal from off-diagonal correlations

$$\hat{\phi}(\mathbf{L})\sim\int d^{2}\mathbf{I}\tilde{\Theta}(\mathbf{I})\tilde{\Theta}(\mathbf{I}-\mathbf{L})$$

• using quadratic estimators

Measuring S_8 with galaxy - CMB lensing cross-correlations

Sky-coverage - unWISE

 $f_{
m sky}\simeq 0.59$

Redshifts for unWISE

dN/dz from ...

 cross-correlating with spectroscopic surveys (BOSS, eBOSS)

$$\widehat{b_{\mathrm{photo.}}} \frac{\widehat{dN_{\mathrm{photo.}}}}{dz} \propto rac{w^{\mathrm{spec.} imes \mathrm{photo.}}(z)}{\sqrt{w^{\mathrm{spec.} imes \mathrm{spec.}}(z)}}$$

• cross matching with photometric redshifts on smaller field (COSMOS)

Systematics weighting

piecewise linear trends for survey depth and stellar density

Additional spectroscopic data from eBOSS

G. Farren: unWISE $g \times CMB$ Lensing κ

PCA based dN/dz marginalisation

Correcting fid. cosmo. dependence of cross-correlation redshifts

- assume fid. cosmo. to measure cross-correlation redshifts
- marginalise over amplitude of $b \frac{dN}{dz}$
- need to correct *z*-dependent fid. cosmo. dependence

$$\widehat{b\frac{dN}{dz}} = \widehat{b\frac{dN}{dz}} \bigg|_{\text{fid. cosmo.}} \frac{C(z)}{C(z)|_{\text{fid. cosmo.}}}$$
$$C(z) = \left[\Delta z H(z) \int k dk P_{gg}(k,z) W(k,z)\right]^{-1/2}$$

Model

- Limber approximation for C_{ℓ}^{gg} and $C_{\ell}^{\kappa g}$
- including lensing magnification
- Power spectrum model: Hybrid Halofit + LPT (like Krolewski et al., 2021)

$$\begin{aligned} P_{gg}(k,z) &= b_{1,E}^2(z)P_{mm,\mathrm{HF}} + b_{2,L}(z)P_{b_2}(k,z) + b_{s,L}(z)P_{b_s}(k,z) \\ &+ b_{1,L}(z)b_{2,L}(z)P_{b_1b_2}(k,z) + \dots + P_{\mathrm{shot noise}} \end{aligned}$$

$$\begin{aligned} P_{gm}(k,z) &= b_{1,E}(z)P_{mm,\mathrm{HF}} + \frac{b_{2,L}(z)}{2}P_{b_2}(k,z) + \frac{b_{s,L}(z)}{2}P_{b_s}(k,z) \\ P_{mm}(k,z) &= P_{mm,\mathrm{HF}}(k,z). \end{aligned}$$

• higher order biases set by co-evolution relations + free offset (co-evolution and priors from simulations)

$$b_{X,L} = b_{X,L}^{ ext{co-evol.}}(b_{1,E}^{ ext{fid}}(z)) + c_{b_{X,L}}^{ ext{offset}}$$

Model verification

• *N*-body sims populated with HOD tuned to reproduce unWISE samples (from Krolewski *et al.*, 2021)

	$\Delta\Omega_m/\sigma_{\Omega_m}$	$\Delta\sigma_8/\sigma_{\sigma_8}$	$\Delta S_8/\sigma_{S_8}$
Blue	0.18	-0.07	0.28
Green	0.18	-0.14	0.07
Joint	0.19	-0.16	0.08

account for non-clustering neutrinos by using (following Chen et al., 2022)

- P_{gg} : ν -free power spectrum, $\langle \delta_{cb} \delta_{cb} \rangle$
- P_{mm} : power spectrum including neutrinos, $\langle \delta_m \delta_m \rangle$
- P_{mg} : cross power spectrum between total matter (including neutrinos) and non-relativistic matter (baryons and dark matter only), $\langle \delta_m \delta_{cb} \rangle$

Monte-carlo lensing norm correction

$$A_{\ell}^{
m MC} = rac{\langle \kappa_{
m input} imes \kappa_{
m input}
angle}{\langle \hat{\kappa}_{
m recon.} imes \kappa_{
m input}
angle}$$

G. Farren: unWISE $g \times \text{CMB}$ Lensing κ

Improved Planck PR4 (NPIPE) lensing reconstruction

Sky-coverage - unWISE x ACT

We perform our analysis fully blinded!

Before unblinding our cosmological constraints we...

- perform $\mathcal{O}(100)$ bandpower and map level null-tests for $C_{\ell}^{\kappa g}$ and C_{ℓ}^{gg}
- estimate (extragalactic) foreground biases from realistic simulations
- perform a series of blind parameter consistency test examining different data cuts and analysis choices
- freeze all baseline priors and scale cuts

ACT DR6 lensing auto-spectrum results

Best constrained parameter $S_8^{\mathrm{CMBL}} = \sigma_8 \left(\frac{\Omega_m}{0.3} \right)^{0.25}$

 $\begin{array}{l} \mbox{ACT DR6 Lensing} \\ S_8^{\rm CMBL} = 0.818 \pm 0.022 \end{array}$

ACT DR6 + Planck PR4 Lensing $S_8^{\text{CMBL}} = 0.813 \pm 0.018$

Planck 2018 CMB aniso.

 $S_8^{
m CMBL} = 0.823 \pm 0.011$

ACT DR6 lensing auto-spectrum results

ACT DR6 Lensing + BAO $\sigma_8 = 0.819 \pm 0.015$

ACT DR6 + Planck PR4 Lensing $\sigma_8 = 0.812 \pm 0.013$

Planck 2018 CMB aniso.

 $\sigma_8 = 0.811 \pm 0.006$

- A. Krolewski, S. Ferraro, and M. White, Journal of Cosmology and Astroparticle Physics **2021** (12), arXiv:2105.03421 .
- E. Abdalla et al., Journal of High Energy Astrophysics 34, 49 (2022).

Planck Collaboration, Aghanim, N., Akrami, Y., Ashdown, M., Aumont, J., et al., A&A 641, A8 (2020).

- A. Krolewski, S. Ferraro, E. F. Schlafly, and M. White, Journal of Cosmology and Astroparticle Physics **2020** (5), arXiv:1909.07412 .
- J. DeRose, N. Kokron, A. Banerjee, S.-F. Chen, M. White, et al., (2023), arXiv:2303.09762 [astro-ph.CO] .
- S.-F. Chen, M. White, J. DeRose, and N. Kokron, Journal of Cosmology and Astroparticle Physics 2022 (07), 041.