Constraining isotropic polarisation rotation with BICEP3

Clara Vergès, James Cornelison & the BICEP/Keck collaboration CMB-S4 Collaboration Meeting - July 31, 2023

Motivation

Effect integrates over the line-of-sight → the CMB is the best place to look for the signal!

Parity-violating field interacting with the electromagnetic field Violation of Lorentz symmetry Primordial magnetic fields \rightarrow polarisation rotation angle α aka "cosmic birefringence"

Impact on the CMB

E-modes Angle a B-modes

--> EB & TB signals

State of the art

ACTPol (2020): - 0.07° ± 0.09° Celestial sources - no absolute reference

Planck/WMAP data (2021/2022): ~ 0.3° ± 0.1° Assumes model for foreground emission

Our goal: $\sigma(\alpha) < 0.1^{\circ}$ Absolute angle calibration, careful systematics mitigation

Overview

- 1. Measure individual detector polarisation angles of BICEP3
- information about the telescope intrinsic polarisation
- 3. Fit an angle to the real data and sims power spectra
- 4. Compare real data to sims given error budget $\sigma(\alpha)$

We remain blinded to real data until we finalise the error budget

2. Use these angles in real data + sims to create data products that include

→ Instrumental calibration (statistical and systematic uncertainties) → CMB data (noise, lensing, dust, instrumental systematics)

SAT @ South Pole2400 detectors at 95 GHzSmall & deep sky patch

Calibrating BICEP3

2022 RPS calibration campaign

1-month campaign

- 390hrs of calibration observation
- + 240hrs of cross-checks & Moon obs.
- 9 different telescope orientations

Rotating Polarised Source (RPS)

Polarisation angle measurements Measurement statistical uncertainty - $\sigma(\alpha) = 0.02^{\circ}$

Measurements systematics

Errors on inputs to the model used to fit calibration data \rightarrow RPS orientation - $\sigma(\alpha) \sim 0.062^{\circ}$ Dominated by rotation stage performance + tilt meter calibration \rightarrow Pointing model of the telescope - $\sigma(\alpha) \sim 0.012^{\circ}$ Apparent orientation of the focal plane with respect to the RPS

Measurement uncertainties - still under investigation Dominated by alignment error between the telescope and the RPS Likely to be $> 0.05^{\circ}$

Angle estimation

Signal type

l range

Using higher *l*-bins better captures the typical shape of the EB signal $\rightarrow \ell_{max} \sim 500$ instead of $\ell_{max} \sim 300$ as in other BK analysis

TB does not bring more constraining power in addition to EB \rightarrow using EB only

Constraining power of the BICEP3 data set

3.3 µK.arcmin map-depth in polarisation*

Sims that contain... \rightarrow only noise: $\sigma(a) = 0.061^{\circ}$ \rightarrow lensed- Λ CDM + noise + Gaussian dust: $\sigma(\alpha) = 0.078^{\circ}$

*2-year data set with reduced coverage because we don't have angle measurements on all detectors

\rightarrow only lensed- Λ CDM: $\sigma(a) = 0.035^{\circ}$ (vs unlensed- Λ CDM $\sigma(a) = 0.004^{\circ}$)

Dust

Dust models (Gaussian, MKD, Vansyngel, MHD) → no bias and no significant impact on statistical uncertainty

Maximally correlated dust toy model $\mathscr{C}_{\ell}^{EB} = \sqrt{\mathscr{C}_{\ell}^{EE} \times \mathscr{C}_{\ell}^{BB}}$ → maximum bias of 0.027°

Dust B-modes x CMB E-modes \rightarrow maximum bias of 0.016°

Additional $\sigma(\alpha) = 0.02^{\circ}$ to account for dust contribution

Instrumental systematics

σ(α) ~ 0.04° Due to T-to-B leakage correlating with TE in the CMB

Temperature-to-polarisation leakage from main beam mismatch -

Beam window function errors - 10% multiplicative error on a

Summary

	Calibration	CMB date
Statistical uncertainty	0.02°	0.078
Systematic uncertainty	> 0.08°	0.045°

How to address the biggest contributions to the error budget?

- Understand alignement error,
 improve hardware performance
 - 2. Use more data, delens
 - BICEP3 6-year data set ~1.9 µK.arcmin

Conclusion

- a CMB experiment year data set

Future prospects → Provide reference for cross-calibration of other CMB telescopes →Extend the framework to include multi-frequency information

→ Highest precision to date in measuring polarisation angles for

→ Detailed breakdown of the uncertainty budget for BICEP3 2-

→ All cross-checks and jackknives passed on real data splits

