

Simulations & Data Challenges: Experiment Models

Sara Simon (she/her)

CMB-S4 Collaboration Meeting April 3-6, 2023

DC0 Experiment Model Overview

- Python dictionary structure that outputs a human-readable toml file
 - bands: tophat frequency bands and their noise properties
 - wafers: wafer slots and properties of wafers including layout, frequencies, wafer-to-wafer spacing, clocking
 - tubes: tube slotting
 - telescopes: telescope/platform slots including beam size (FWHM) and platescale
 - cards: readout card slotting (dummy readout mapping)
 - crates: readout crate slotting (dummy readout mapping)
 - detectors: individual detector properties
- These are positional slots tied to physical locations
- Noise: Per detector NET and correlation factors + NET vs. PWV and NET vs. elevation scalings fit from jbolo simulations
- Optics: Linear layout projected on-sky via a platescale

DC0 Simulation Details

- Key instrument updates to match point design
 - 3 SATs vs. 6
 - LF band changes, 227 GHz band edges (minor)
 - Optics updates (scale factor, beams, tube spacing)
 - Distribution of SAT optics tubes on mounts
 - Updated beam sizes
 - Noise updates
 - Dead pixels for pins and slots implemented
 - Removed partial wafers that approximate optically "good" detectors→ cut on optically "good" detectors to match point design
 - SAT wafer clocking to avoid losing additional pixels

Note: CHLAT sims ran in December and thus used the AoA configuration. Similar updates will be implemented in a new branch to ensure we capture changes

DC1 Simulation Draft Plan

- This is a draft plan. We would like your feedback
 - Comments during this session
 - Can also message Sara after session
- These include proposed updates and areas of study for DC1
- Based on feedback from last project meeting
- Scoped to match the available resources for this work and DC1 timeline (end of this calendar year)
- Keeping projects that we can't address in this run in a list of future priorities

DC1 Simulation Goals

- Update instrument model to match evolving design
- SPLAT scan strategy study: SPT-like raster vs. azimuthal-locked constant elevation scans
- Capabilities for more realistic bandpasses and beams
- Ground pickup framework

Future Goals

- Comparison and validation with real data→ Some high-level comparisons in validation and verification process, but detailed studies are a top future priority
- Bolometer model with optical loading \rightarrow stability/non-linearity studies
- Updated readout structure for TMUX
- Future systematic studies:
 - Gain variation, temperature gradients, 1/f noise
 - Crosstalk
 - Other systematics prioritized by systematics group
- Understanding required S:N for calibration
- Effects from RFI

