


Simulations & Data Challenges: Extragalactic Foregrounds

Zack Li on behalf of Half Dome and WebSky teams

CMB-S4 Collaboration Meeting April 3-6, 2023

Science goals for extragalactic foreground simulations

Validate data analysis pipelines

Estimate covariances

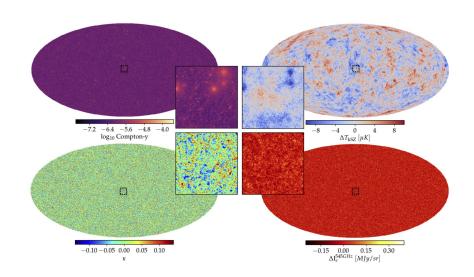
Emulators, predictions for observables beyond 2-pt, nonlinear analyses

Training sets for machine learning, component separation

Goals for deliverables

Stage IV cosmology

- Full-sky mocks of the millimeter sky
- Correlated with radio, IR, and optical galaxy surveys
- Agreement with existing data, particularly for cross-correlation
- Convenient PySM interface, O(1000) realizations


Extensions and further science

- Beyond LCDM mocks with fNL, other non-gaussianity
- Multiple astrophysical models, as different as possible

DC-0 Status: WebSky 0.4

- Minor updates to CIB and higher nside, relative to Stein et al. 2020
- PySM interface for accessing the WebSky models, with interpolation for bandpass integration

HalfDome Team

Yici Zhong

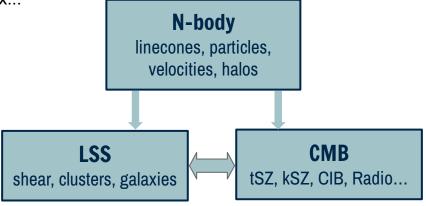
Adrian Bayer

Yu Feng

Jia Liu

Joe DeRose

Zack Li


Giuseppe Puglisi

Mat Madhavacheril

Marcelo Alvarez

HalfDome Correlated Simulations: Philosophy

- Codes written with future upgrades in mind
 - Empirical, flexible astrophysical models to be regularly updated as observations improve
 - Codes in modules that can be updated/swapped independently
 - Validation tests for quality control when updating models/codes
- Designed for cross-correlation of Stage IV surveys
 - CMB surveys: CMB-S4, Simons Observatory, LiteBIRD...
 - LSS surveys: DESI, PFS, LSST, Roman, SPHEREx...
 - Aimed at production runs (1000s simulations)
 - Adopt fast codes (fastPM, rfof, CLF...)
 - Aggressive downsampling schemes

HalfDome Simulation Overview

- Simulation configuration:

 - $\begin{array}{ll}
 \circ & f_{\text{sky}} = 1 \\
 \circ & M_{\text{min}} = 10^{12} \,\text{M}_{\text{sun}}/h
 \end{array}$
 - \circ Box size = 5Gpc/h
 - $N_{\text{Particle}} = 8192^3$
- Healpix and CAR mocks:
 - LSS: clusters, galaxies, shear, convergence
 - CMB: tSZ, kSZ,CIB, radio, CMB lensing
- Release ~ Fall 2023

Correlated Simulation Challenges

Assuming 1000 simulations*

1. Optical-CMB connections

AGN-Radio galaxies; SFR-CIB Adding other observables (21cm, LIM, x-ray)?

- 2. Computing time: ~half billion CPU hours
 Large memory need: quarter million cores simultaneously
- 3. Storage: ~10-100s PB Raw: 500TB/run; aggressive downsampling needed->100TB per run
- 4. Cross-collaboration collaboration

Currently operate as a lose collaboration between people who are deeply embedded in DESI/LSST/SO/S4 Future access to multiple surveys' internal pipelines & proprietary data for future upgrades: N² MOUs?? Training and acknowledging simulation scientists

^{*} A very conservative assumption..

Also see "Report from the Tri-Agency Cosmological Simulation Task Force" by Battaglia+2020

A review of existing and upcoming extragalactic mocks

Sehgal Sehgal et al. 2009, some updates in 2019 from Colin Hill	One N-body realisation, this is a legacy dataset which remains useful for testing robustness to different astrophysics
WebSky Stein et al. 2020, radio galaxies from Li et al. 2021	Peak Patch simulations with halo-based response functions, widely used in Stage 3 analysis. Ongoing development for non-Gaussianities and line intensity mapping (CO and C II)
Agora Omori 2022, LIM from Sato-Polito et al. 2023	Halo-based models from a single MDPL2 halo realization shared with Universe Machine for galaxies, merger trees can provide more accurate galaxy physics
Half Dome HD team in prep, Fall 2023	Designed for Stage IV survey requirements, emphasis on empirical modeling and cross-correlations with galaxy surveys, O(10-100) fastPM realizations for covariance

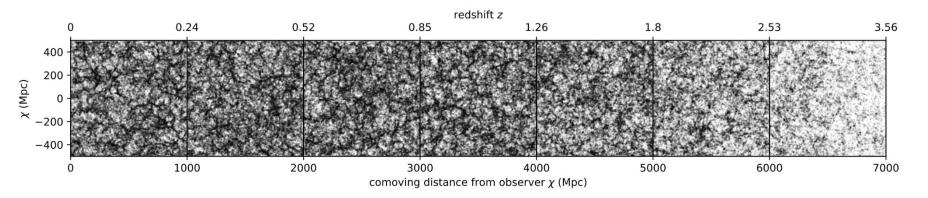
WebSky 2: focus on non-Gaussianity, LIM

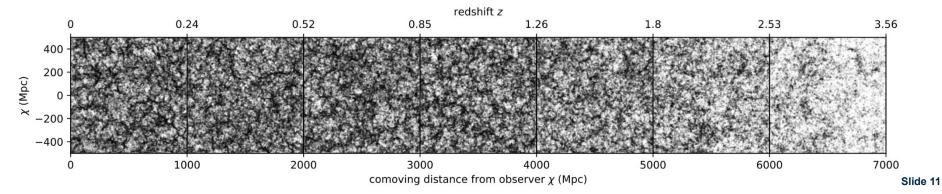
Martine Lokken

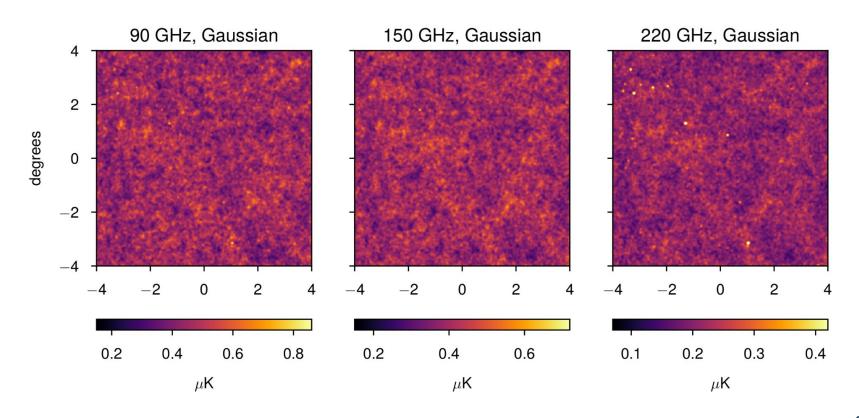
Tom Morrison

Doga Tolgay

Dongwoo Chung


Zack Li


Dick Bond


Gaussian Peak Patches

Non-Gaussian

Extragalactic CO lines seen through ACT bandpasses

Future and DC-1

- Stay tuned for the Fall 2023 first release of Half Dome, full-sky multiwavelength mocks designed with CMB-S4 and galaxy survey cross-correlations in mind
- WebSky 2 development will explore well-motivated forms of non-Gaussianity from inflation beyond fNL, as well as halo-based models for extragalactic CO and C II
- Having multiple millimeter sky simulations will be very useful for pipeline validation, particularly for machine learning methods which require training sets

