

A RENEWABLE ENERGY FUTURE AT THE SOUTH POLE

Photo credit: A. Chokshi

SUSAN BABINEC (ARGONNE) AMY BENDER (ARGONNE) RALPH MUEHLEISEN (ARGONNE) RIK YOSHIDA (ARGONNE) IAN BARING-GOULD (NREL) NATE BLAIR (NREL) XIANGKUN LI (NREL) DAN OLIS (NREL) SILVANA OVAITT (NREL)

CMB-S4 Collaboration Meeting: 2023-04-04

EXECUTIVE SUMMARY

- Outcome: Renewable systems provide significant decarbonization and operations cost savings compared to diesel-only at the South Pole
 - Example: For a 170 kW load with a 15 year lifetime, a solar+wind+storage+diesel system can reduce diesel consumption by 95%, save \$10s of millions, with a ~2 year payback
 - Broad concept with identified applications
 - Technology is mature, South Pole specific implementation requires some developments
- System-wide optimization advises on component sizing & economics
 - Renewable resource (solar, wind) availability modeled from NOAA data
 - Singular, detailed inputs and technical constraints incorporated for South Pole
 - Note: Specific implementation choices such as location of equipment are *deliberately not made*. We
 do include requirements to mitigate any impact on science quality of the site.
- Argonne & NREL collaboration brings unique expertise to this detailed assessment of renewable energy opportunity at the South Pole

RENEWABLE ENERGY IS ALREADY IN USE AT SOME ANTARCTIC STATIONS

Wind	wable Energy Solar PV Thermal Solar Solar + Wind							
Ranking	Name of Station	Country	Туре					
1	Scott Base	New Zealand	Station					
2	Mawson	Australia	Station					
3	Comandante Ferraz	Brazil	Station					
	Jang Bogo	South Korea	Station					
5	Dumont d'Urville	France	Station					
6	Arrival Heights Laboratory	New Zealand	Laboratory					
	Arrival Heights Satellite Station	New Zealand	Laboratory					
	McMurdo	United States	Station					
9	Artigas	Uruguay	Station					
	Casey	Australia	Station					
11	Neumayer III	Germany	Station					
12	Syowa	Japan	Station					
13	Marambio	Argentina	Station					
14	Zhongshan	China	Station					
15	Rothera	United Kingdom	Station					
16	Concordia	Italy/France	Station					
	Troll	Norway	Station					

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

EXPERT & EXPERIENCED TEAM

Susan Babinec (energy storage)

Ralph Muehleisen (solar modeling & system design)

Nate Blair (economics)

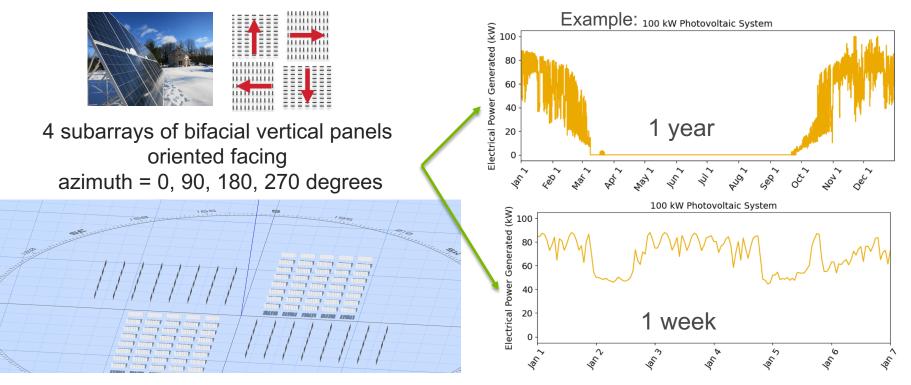
lan Baring-Gould (wind modeling)

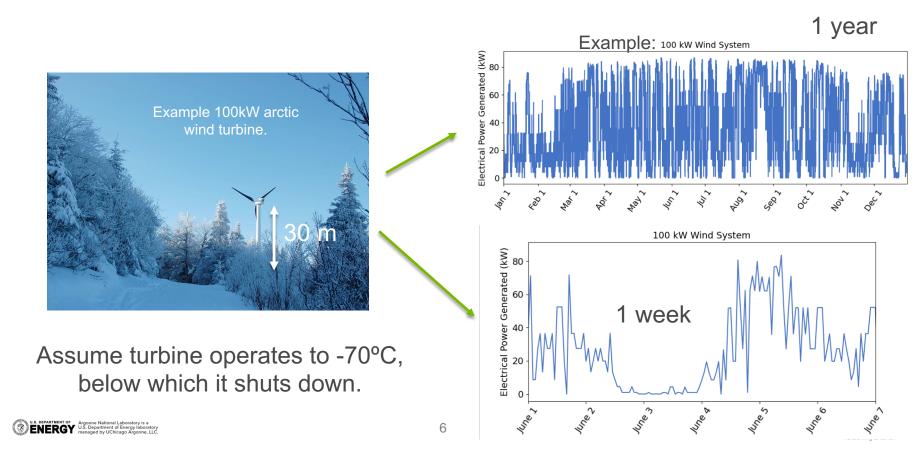
Amy Bender (CMB exp, S. Pole)

Rik Yoshida (HEP experiments)

Xiangkun Li (system optimization)

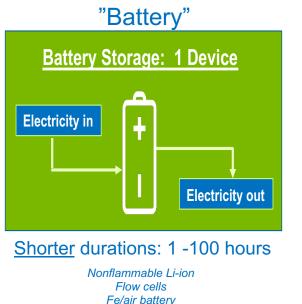
Dan Olis (system optimization)


Silvana Ovaitt (solar modeling)

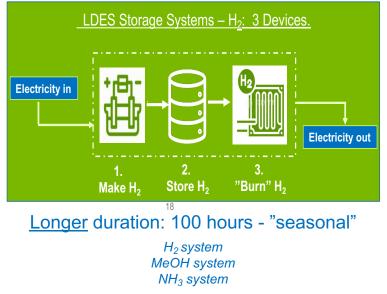


ENERGY GENERATION RESOURCES: SOLAR

- NOAA data from the past decade is used to inform solar availability over the year
 - 2016 is an 'average' year used in this analysis
 - Polar longitude dictates unique panel configuration and power generation profile



ENERGY GENERATION RESOURCES: WIND


ENERGY STORAGE OPTIONS

e^{-} in $\Leftrightarrow e^{-}$ out: Two basic approaches

Flow cells Fe/air battery MgMnOx (thermal) Liquid metal battery

"Energy Storage System""

Shorter duration storage technologies have higher technical readiness levels LDES = long duration energy storage

COMMERICAL-GRADE TOOL, UNIQUE INPUTS

<u>Renewable Energy Integration & Optimization (REopt)</u>

- REopt is a constrained optimization tool developed by NREL
 - Advises on cost-effective way to meet energy needs given available resources
 - REopt can answer different questions depending on the inputs & constraints applied
 - Decades of development on this tool
- Inputs:
 - Load requirements of application (Example: 170 kW)
 - Site specific renewable resource profiles (solar and wind)
 - Capital materials and labor estimates
 - Operations and maintenance cost estimates
 - Site specific cost estimates (e.g., shipping cost to South Pole, fuel cost)
 - Lifetime of system (Example: **15 years**)
- Outputs:
 - **Optimized sizing** of each component (solar, wind, storage)
 - Upfront capital, lifetime cost, net present value
 - Time to payback

Solar panel geometry

Temperature rating of components vs cost

South Pole logistical constraints

Housing of batteries

Position & number of inverters for batteries

Battery round trip efficiency

Battery cycling approach & system sizing

https://reopt.nrel.gov/

CONFIGURATION OVERVIEW

Example load = 170 kW Example lifetime = 15 years

F

Jor Willie

17 configurations have been run. These tell a clear story of the unique site constraints and the opportunity of RE.

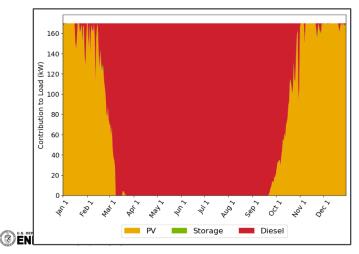
		\sim			
Baseline Existing	•				
RE Configuration 1	•	•		•	
RE Configuration 2	•	•	•	•	
RE Configuration 3	•	•	•		•

LEST.

A.

11/12

RE = Renewable Energy


Configurations 1-3 all include diesel which REopt shows as beneficial.

9

RE CONFIGURATION 1

- System size optimized for Nov 1 Jan 31 period, then analysis expanded to full year solar collection at that size
- 98% less fuel consumed during austral summer optimization period; 36% reduction in diesel fuel consumed when full year considered
- PV panels and Lithium-Ion batteries are mature, commercially available, low-risk technologies

		_
Upfront Capital	\$1.93 M	
% Diesel Reduction	36%	
Years to Payback	1.1	savings compared t
Lifetime cost	\$48.9 M	100% diese
Net Present Value	\$23.8 M / 32%	
PV Size	354 kW	
Wind Size	0 kW	
Battery Size	8 kW for <3.6> hours	
Yearly Diesel Used	79,800 gal	
4.5 115 11		•

15 year lifetime assumed.

Configuration produces energy in addition the required load (170kW) shown here.

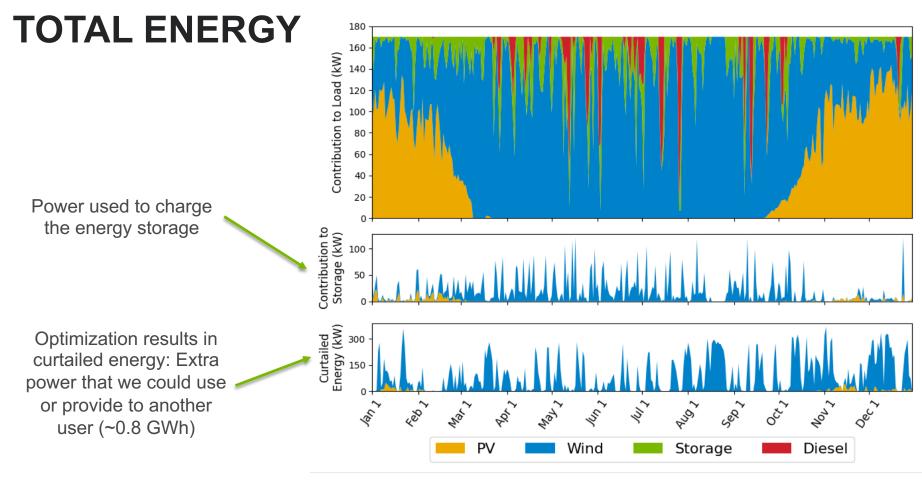
to el

RE CONFIGURATION 2

Wind provides resource when sun is unavailable. 160 140 Contribution to Load (kW) 09 001 001 001 40 20 0 377 697 No1,2 50 Storage Diesel

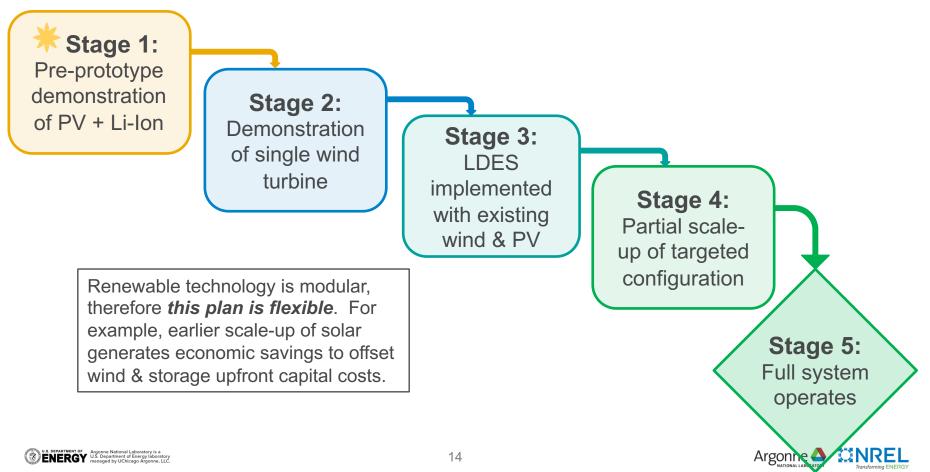
Configuration produces energy in addition the required load (170kW) shown here.

These are all mature technologies!



Upfront Capital	\$9.68 M		
% Diesel Reduction	95.5%		
Years to Payback	2.1		
Lifetime cost	\$14.9 M		
Net Present Value	\$57.8 M / 79%		
PV Size	182 kW		
Wind Size	569 kW		
Battery Size	180 kW for <18.9> hours		
Annual Diesel Used	5,600 gal		

RE Configuration 3 (LDES instead of lithium-ion) has very similar economics due to emerging technologies. LDES should continue to be considered in the future.



SIDE BY SIDE COMPARISON

	Baseline Existing	RE Config 1 (PV + Li-Ion)	RE Config 2 (PV + wind + Li-Ion)	RE Config 3 (PV + wind + LDES)
Upfront Capital	0	\$1,926,806	\$9,681,999	\$8,903,020
% Diesel Reduction	0	36%	95.5%	93.1%
Years to Payback	-	1.1	2.1	2.0
Lifetime cost	\$72,745,453	\$48,941,401	\$14,938,109	\$15,944,373
Net Present Value	0	\$23,804,052	\$57,807,344	\$56,801,080
PV Size	0	354 kW	182 kW	199 kW
Wind Size	0	0 kW	569 kW	576 kW
Battery Size	0	8 kW for <3.6> hours	180 kW for <18.9> hours	203 kW for <10.9> hours
Yearly Diesel Used	124,095 gal	79,831 gal	5,553 gal	8,540 gal
Yearly CO ₂ Emission Saved	0	432 metric tons	1156 metric tons	1127 metric tons

STAGED IMPLEMENTATION

FUTURE RESEARCH & DEVELOPMENTS

- Solar
 - Durability
 - Snow drift maintenance
- Wind
 - Durability (demonstrate operational temperature down to -70° C)
 - Foundation engineering (work with CRREL)
 - EMI for all telescopes, sidelobe modeling for SPLAT
 - Improved wind measurements
- Energy Storage
 - Predict durability of Lithium-Ion over time in this scenario
 - Understand power : energy ratio & time constants (noise in power in and out of the storage)
 - As long-duration technology (LDES) increases maturity, characterize impact
- Diesel
 - Understand impact of noisy load profile on diesel system
- Development of safety technology, standards, and mitigations

RENEWABLE ENERGY IS VIABLE AT THE SOUTH POLE.

- A significant reduction in carbon footprint and cost of operations is possible using mature renewable energy technology.
 - Payback time on capital investment is ~ 2 years
- Primary risk is durability in extreme environment
 - Risks can be mitigated with engineering development and demonstrations
- A staged, flexible implementation will reap economic benefits while retiring technical risks

