Compton-y: Auto-spectrum and cross-correlation with CMB lensing and shear

Colin Hill

Columbia University

collaborators: the many people who contributed to related work in the CMB-S4 Decadal Survey Report; Boris Bolliet; Fiona McCarthy; Nick Battaglia; Enrico Pajer; David Spergel

> CMB-S4 Project Meeting Zoom 6 April 2023

Thermal SZ Effect

Thermal SZ Effect: Change in temperature of CMB photons due to inverse-Compton scattering off hot electrons, most of which are in the intracluster medium (ICM) of galaxy groups/clusters

Thermal SZ Effect

Unique spectral signature

Can thus be isolated and mapped using multi-frequency data

Figures: Carlstrom+ (2002)

Matter Mapping with the CMB^{Columbia}

CMB-S4 DSR (2019)

Beyond Cluster Counts

Thermal SZ Statistics

- Probe cosmology and astrophysics:
- tSZ power spectrum [Sievers+ (2013); George+ (2015); Planck+ (2016); Bolliet+ (2018)
- tSZ skewness / bispectrum [Wilson+ (2012); Crawford+ (2014); Planck+ (2016)]
- tSZ 1-point PDF [JCH+ (2014); Planck+ (2016)]
- tSZ x CMB lensing [JCH & Spergel (2014); McCarthy & JCH (in prep.)]
- tSZ x galaxy lensing [e.g., van Waerbeke+ (2014); Hojjati+ (2016); Gatti+ (2022)]
- Probe astrophysics (e.g., AGN feedback):
- tSZ stacking:
 - galaxies [e.g., Hand+ (2011); Planck+ (2013); Greco, JCH+ (2015); JCH+ (2018); ...]
 - QUASARS [e.g., Ruan+ (2015); Crichton+ (2016); Verdier+ (2016); ...]
 - Clusters [e.g., Plagge+ (2010); Planck+ (2013); ...]

Colin Hill Thermal SZ Power Spectrum Columbia

Existing constraints: *Planck* at ell < 1000; ACT/SPT at ell=3000 (inferred by very different techniques)

Kusiak, Surrao, JCH (2023)

CMB-S4: Thermal SZ

Colin Hill

Columbia

The first experiment to map the diffuse Compton-*y* field to the cosmic-variance limit on any scale (for S4: 3000<ell<5000)

CMB-S4 DSR (2019); see also related work from Srini Raghunathan for PBDR

Origin of the Thermal SZ PS Columbia

Halo model decomposition in terms of halo mass and redshift

Sensitive probe of both cosmology ($\sim \sigma_8^{7-8}$) and gastrophysics Bolliet et al. (in prep.): computed with CLASS_SZ [<u>https://github.com/CLASS-SZ</u>]

Fisher Forecasts: Σm_v

Gas physics marginalized

 $\sigma(\Sigma m_v) = 91 \text{ meV}$ $\sigma(\Sigma m_v) = 81 \text{ meV}$ $\sigma(\Sigma m_v) = 49 \text{ meV}$

incl. tSZ trispectrum in cov.

 $\sigma(\Sigma m_v) = 95 \text{ meV}$ $\sigma(\Sigma m_v) = 85 \text{ meV}$ $\sigma(\Sigma m_v) = 56 \text{ meV}$

tSZ x CMB Lensing

Probe of relationship of hot, ionized gas and matter density

New analysis using Planck NPIPE data

CMB lensing from Planck PR4 maps

Carron+ (2022)

Colin Hill

Columbia

JCH & Spergel (2014); McCarthy & JCH (in prep.)¹⁰

tSZ x CMB Lensing

Colin Hill

Columbia

CIB contamination robustly cleaned using moment-based method

tSZ x CMB Lensing

Validation on Websky simulations (w/ moment-based CIB cleaning)

tSZ x CMB Lensing

Colin Hill

Columbia

Significant sensitivity gain over Planck nominal mission analysis

tSZ x CMB Lensing

Probe of ICM gas physics in low-mass, high-z clusters

Here $P_0 = 1$ corresponds to Battaglia+ (2012) ICM model

tSZ x Galaxy Lensing

Colin Hill

Columbia

Probe of relationship of hot, ionized gas and matter density Recent analyses using ACT(+Planck) DR4 y-map x KiDS

Gatti+ (2022); Pandey+ (2022); Troster+ (2022) 15

tSZ x Galaxy Lensing

Colin Hill

Columbia

ACT+Planck x DES-Y3: 21σ detection

Gatti+ (2022); Pandey+ (2022)

tSZ x Galaxy Lensing

Colin Hill

Columbia

ACT+Planck x DES-Y3: novel constraints on Y-M relation

Gatti+ (2022); Pandey+ (2022)

Forecasts/Outlook

Colin Hill

Columbia

An ancient forecast from the 2016 LSST Brookhaven Cross-Correlation Spectacular

Clearly we won't be short on SNR. But can we robustly clean CIB/radio/etc. to this level? And model the signals across the full range of measured scales? Work to be done

Thanks

Colin Hill Columbia

CMB-S4 DSR (2019)