

CMB-S4 Transient Pipeline Development and Evaluation Felipe Menanteau (he/him) **CMB-S4** Collaboration Apr 3-6, 2023

Objective

- Detect and report transients events for CMB-S4
- Evaluate the SPT-3G software and SPT-3G Transient pipeline for this (https://github.com/SouthPoleTelescope/spt3g software)
- Use CMB-S4 DC0 Simulations for this task
- transient detection

Follow the path of Whitehorn (2016) SPTPol and Guns et al (2021) SPT-3G for

Thanks:

- Sam Guns
- Allen Foster
- Tom Crawford
- Sasha Rahlin
- Nathan Whitehorn

DCO Simulations

- 5711 CHLAT SCAN maps (RISING & SETTING) transferred to from NERSC to the Illinois Campus Cluster (ICC) at the National Center for Supercomputing Applications (NCSA).
- All 5711CHLAT noise maps in HDF5 format were transformed into Healpix (FITS) all-sky maps using toast (i.e. toast healpix coadd) on the ICC.
- Tiles use a ZEA projection
- We used the Singularity Containers (based of docker) for the batch jobs at the ICC

• We tiled the sky in 36 \sim 20deg x 20deg tiles and use these tiles for our analysis.

Code repo for CMB-S4 Transient Pipeline: <u>https://github.com/CMB-S4/s4trans/</u>

DC0 Simulations

RISING SCAN 40-150-10 RISING SCAN 40-157-9

RISING SCAN 40-162-9

DCO Simulations (Tiling)

Sky Tiling on DC0 Scans (Arbitrary)

Injection of transient sources (inputs)

 Projection + Injection + Filtering takes ~12 min over 1 tile per scan/observation on ICC running x40 wide

20

Source Detection and Light Curve Recovery Using the SPT-3G Transient Pipeline

15004000

Time (hr)

Future Work

- Run Source injection and LightCurve extraction at scale (all sky?) at ICC
- Inject sources at various time-scales and fluxes
- Verify/Distribute/Asses DC0 results How??
- Follow steps of SPT-3G collaboration and develop a cutout/lightcurve server for transients like the "SPT-3G Cutout Web App"

SPT-3G // Cutout Service / Request Cutout

Home Ж Cutout Status

Single Observation Section	Select frequency bands
Use Single Observation maps	90GHz
	✓ 150GHz
Select Date range for Single Observation maps only	220GHz
Acceptable range: 2019-01-01 to 2022-06-22	Select at least one frequency hand
01/01/2019	Select at least one nequency band.
- End Date	Input a CSV-formatted table of cutout
11/30/2021	Optional column with unique id/name
	RA, DEC, XSIZE, YSIZE
Filetype Section	358.3406816, -58.9660379, 10, 1 354.3406815, -58.9660379, 10, 1
	357.3466815, -58.9660379, 10, 1
Select filetypes for Single Observation maps.	
winter_2020 and rawmap_v1_2019_2020	
passthrough	
✓ filtered	
Select at least one filetype.	
	UPLOAD CSV
oadd Section	FILE
	Get lightcurves for input posit
Select Coadd ID for coadds only	
vinter_2020	Do not make FITS thumbnails
rawmap_v1_2019_2020	Select uniform coverage
cleanbeammap_v1_2019_2020	Send email notification

SPT-3G Cutout Web App

FM

positions, (RA, DEC) in decimal degrees, (XSIZE, YSIZE) in arcmin. s can be added so columns are OBJID, RA, DEC, XSIZE, YSIZE

- Built on DES experience
- K8s deployment on NCSA radiant (open stack)
- K8s for job management an resources
- Web front-end is React JS
- CILogin for authentication
- Retrieve files using wget
- 100% open source deployment
- We have python REST API

ons

Full k8s deployment repo home: https://gitlab.com/spt3g/kubernetes

South Pole Telescope (SPT) at NCSA

Launch app

Learn more

Conclusions

- We have demonstrated that we can use the SPT-3G software to load, project and filter DC0 scan maps
- Starting point for SPT-3G software are Healpix maps.
- We have developed code to insert transient sources of arbitrary flux/times
- We have used SPT-3G software to project (ZEA) and filter the DC0 scans over ~40 observations. Run times are about 15 min/tile.
- Can run over all tiles in 15hrs
- We have demonstrated that we can successfully run the SPT-3G transient pipeline to recover the injected sources.

