

Features in the Primordial Power Spectrum (Snowmass Session)

Benjamin Wallisch

CMB-S4 Collaboration Meeting May 9-13, 2022

Initial Conditions and Inflation

Primordial density fluctuations are inferred from observations as

Gaussian and almost scale-invariant.

 \rightarrow Power-law power spectrum characterized by $A_{\rm s}$ and $n_{\rm s}$.

Simple Imprints of New Physics Predicted by Inflation

CMB-S4 Collaboration Meeting, May 9-13, 2022

Theoretical Background for Primordial Features

- Primordial dynamics may exhibit a significant departure from scale invariance:
 - → Generic in broad classes of models beyond simplest,
 - \rightarrow New energy scales during inflation.
- Ubiquitous when connecting inflationary modeling to fundamental physics.
- Strongly scale-dependent deviations from minimal power-law power spectrum:
 - → Oscillatory and/or localized imprints in momentum space.

Theoretical Targets for Primordial Features

- Two main classes:
 - Sharp features: momentary departure of evolution from attractor,
 - Resonant features: periodic oscillation around attractor solution.
- Correlated signals in power spectrum and higher-point spectra.
- No useful theoretical priors on scale/amplitude of primordial features:
 → Origin: lack of our understanding of fundamental physics,
 - \rightarrow Cover as much of parameter and model space as possible.

CMB Observations of Primordial Features

• CMB anisotropies have been leading the constraining power (Planck):

- \rightarrow Template searches and non-parametric reconstruction,
- \rightarrow Power spectrum and polyspectra searches,
- \rightarrow No significant detections.
- CMB-S4 science requirements for N_{eff} also cover those for primordial features:
 → Temperature and polarization spectra covering all, especially high multipoles.

CMB-S4 Will Improve Current and Stage-3 Bounds

arXiv:1906.08758/arXiv:2203.08128 (adapted)

LSS Surveys Are Complementary to the CMB

CMB-S4 Collaboration Meeting, May 9-13, 2022

arXiv:1906.08758/arXiv:2203.08128 (adapted)

Conclusions

- Potential detection of primordial features could have profound implications for our understanding of fundamental physics.
- Upper limits can inform model building efforts and narrow the vast theoretical possibilities.
- CMB-S4 will provide an important anchor for feature searches in the power spectrum and higher-point spectra (via established and new analyses).
- See the white paper for further details.

arXiv:2203.08128

Inflation: Theory and Observations

Editors: Guilherme L. Pimentel, Benjamin Wallisch and W. L. Kimmy Wu

Ana Achúcarro,^{1,2} Matteo Biagetti,^{3,4,5,6} Matteo Braglia,^{7,8} Giovanni Cabass,⁹ Emanuele Castorina,¹⁰ Robert Caldwell,¹¹ Xingang Chen,¹² William Coulton,¹³ Raphael Flauger,¹⁴ Jacopo Fumagalli,^{7,15} Mikhail M. Ivanov,⁹ Hayden Lee,¹⁶ Azadeh Maleknejad,¹⁷ P. Daniel Meerburg,¹⁸ Azadeh Moradinezhad Dizgah,¹⁹ Gonzalo A. Palma,²⁰ Sébastien Renaux-Petel,²¹ Guilherme L. Pimentel,^{1,22} Benjamin Wallisch,^{9,14} Benjamin D. Wandelt,^{21,13} Lukas T. Witkowski²¹ and W. L. Kimmy Wu^{23,24}

<u>Comments</u> and <u>endorsements</u> of the white paper are still welcome.

CMB-S4 Collaboration Meeting, May 9-13, 2022