Dark Matter Physics from the CMB-S4 Experiment (based on arXiv:2203.07064)

> Cora Dvorkin Harvard University

CMB-S4 Collaboration meeting May 2022

Dark Matter Physics from the CMB-S4 Experiment

Cora Dvorkin^{*1}, Renée Hlozek^{2,3}, Rui An⁴, Kimberly K. Boddy⁵, Francis-Yan Cyr-Racine⁶, Gerrit S. Farren⁷, Vera Gluscevic⁴, Daniel Grin⁸, David J. E. Marsh⁹, Joel Meyers¹⁰, Keir K. Rogers², Katelin Schutz¹¹, and Weishuang Linda Xu¹²

¹Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, USA
²Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4, Canada
³Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4, Canada
⁴Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, 90089, USA
⁵Department of Physics, The University of Texas at Austin, Austin, TX 78712, USA
⁶Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87106, USA
⁷Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom
⁸Department of Physics, and Astronomy, Haverford College, 370 Lancaster Ave, Haverford, PA 19041, United States
⁹Department of Physics, Southern Methodist University, Dallas, TX 75275, USA
¹¹Department of Physics, Ernest Rutherford Physics Building, 3600 Rue University, Montréal, QC H3A 2T8
¹²Berkeley Center for Theoretical Physics, South Hall Rd, Berkeley, CA 94720, United States

Dark sector

Abazajian et al., (2019)

Ultra-light Axions

Figure adapted from Farren et al. (2021)

Dark matter-baryon scattering

Dvorkin et al. (2016)

Li et al. (2018)

Dark matter-baryon scattering

Figure adapted from Rogers, Dvorkin and Peiris (PRL, 2022)

Dark matter freeze-in

Freeze-in

Hall et al. (2009)

Dvorkin, Lin and Schutz (PRD "Editor's Suggestion", 2019)

Dark Matter born out of light

ruled out

Dvorkin, Lin and Schutz (PRL, 2021)

Complementarity with direct detection searches

ruled out

Dvorkin, Lin and Schutz (PRL, 2021)

Dark Matter-Dark Radiation interactions

Figure from Abazajian et al. (2016) Models from Cyr-Racine et al. (2016)

Why is the CMB a powerful probe of dark matter?

- Sensitivity of the CMB measurements to the dark sector do not rely on assumptions about the local dark matter distribution; insensitive to the details of astrophysical modeling.
- Improved measurements of CMB lensing will provide insights into the clustering of matter across a wide range of scales.
- Leap in sensitivity to CMB fluctuations will enable new insights into the nature of dark matter.