

Detector Readout and Module (DRM) Plans

Brenna Flaugher

CMB-S4 Collaboration Meeting May 9-13, 2022

- Strawperson Detector fabrication plan and status of P6 cost and schedule
- Getting from R&D to Production

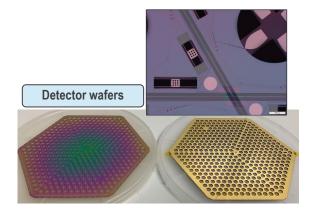
Strawperson Detector Fabrication Plan Uses 6 Sites To Reduce Risk

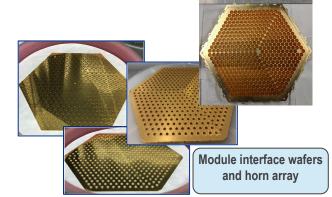
- Each detector type fabricated by at least 2 sites to reduce risk of single point failure
- Develop 6 sites (SLAC starts FY25/26), maximize flexibility to capture existing resources and expertise; minimize need to hire/train new people or procure new equipment
- Build on existing experience and relationships between Labs, Universities and Commercial
- July 2021 request for information (RFI) sent to all fab. sites: production rates, cost, equipment needs, potential for ramp up beyond current rate
- To protect proprietary information we calculated an average rate and cost; used in P6
 - Average rate ~2 science grade wafers per month per site; some sites indicated additional capacity available
 - Average cost per science grade wafer calculated from RFI response is ~\$97K
- Project will optimize the strawperson fabrication plan based on risk, cost and schedule as we proceed through prototype and pre-production stages

Strawperson Production Fabrication Plan Lasts ~Four Years

- Production sequence incorporated P6
- Total detector production cost (in P6) uses the average cost per wafer and the distribution across sites in this plan
- Plan to reoptimize based on performance, risk, cost and schedule at least annually

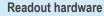
Pixels/ wafer		Number Wafers	name
12	SAT 30/40GHz	24	SAT LF
27	LAT 20GHz	4	LAT ULF
48	LAT 30/40GHz	25	LAT LF
147	SAT 85/145	72	SAT MF1
169	SAT 95/155	72	SAT MF2
432	LAT 90/150	162	LAT MF
469	SAT/LAT 225/278	112	SAT/LAT HF


	DAT	TE FOR PROD	UCTION STA	RT (CD-3a)	DEPENDS	ON FY23/24	4 FUNDING	G, Columns	are ~ 6 Mon	th inter	vals
Science Grade	Wafers		Yea	ars are appro	oximate date	es					
	202	5	2026		2027		2028		2029		Total
Site 1 = ANL	2	8	8	10	10	12	12	12	12	12	98
Site 2 = JPL	2	10	6	18	8	12	12	12	10	12	102
Site 3 = SEEQC	2	10	12	10	10	12	12	12	12	12	104
Site 4 = NIST	2	11	12	12	12	10	10	12	12	12	105
Site 5 = SLAC					10	12	8	14	15	15	74
Site 6 = Marvell	2	4	4	5	2	4	4	5	5	5	40
Total Science Grade	10	43	42	55	52	62	58	67	66	68	523
~ Number of wafer modules to test	15	63	62	81	76	91	85	99	97	100	769



R&D (FY19-present) Addresses Highest Risks

Detectors, Readout, Modules Assembly and Test


- Develop dual Tc transition edge sensor (TES) arrays at multiple sites to validate processes and qualification for the detector fabrication plan
- Develop readout hardware interfacing to detector design
- Develop module assembly and test capabilities

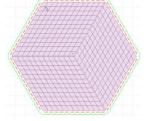
R&D overview

Focus on development of prototype detector arrays, readout and modules

CDFG Goals established in 2020: Define requirements for CDFG wafers (dark only), Fabricate CDFG wafers, Build into modules, perform Dark tests CDFG wafers: LAT MF and SAT-MF-Like Rf-coupling wafers turned out to be unexpected bottleneck

FY22: CDFG wafers delivered to FNAL from Seeqc and ANL, 100 mk RO boards from SLAC will arrive in May, dark tests this summer

FY 22/23 Plan: Refine requirements, develop detailed layouts, focus fab sites on specific wafer types, fabricate prototype wafer for dark and optical testing in FY22/23:

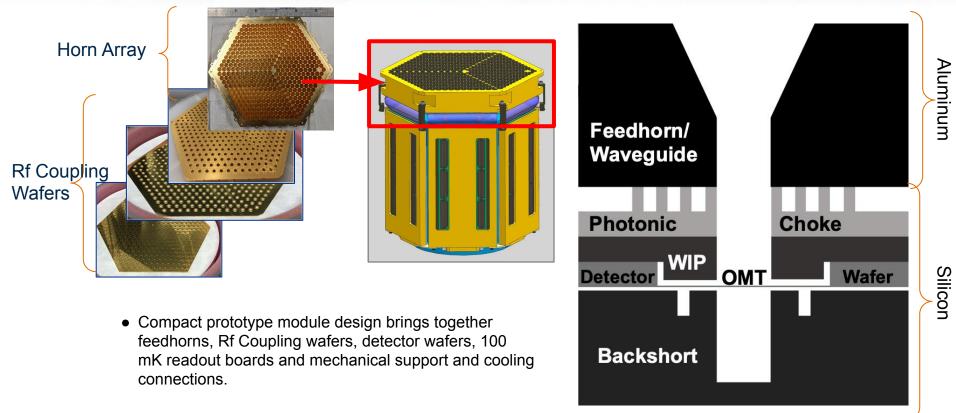

Seeqc, JPL - SAT MF2 ANL, NIST - LAT MF UCB - LAT LF



1st CMB-S4 detector wafers: CDFG Wafers

- Developed parameters in May 2020, RFI to Fab sites July 2020
- Based on the detector parameters for LAT mid frequency bands (90/150) - Dark
- Two layouts: LAT MF (5.3mm pitch) and SAT-like MF (9.4mm pitch)
- Wafers will be assembled into flat modules
- Minimum goal: Dark tests
- Optical tests if possible

ANL and Seeqc fabricated, tested and delivered CDFG wafers to FNAL in FY22.


90GHz	Parameter	Low	Target	High
Science TES	Psat (pW)	2.8	3.5	4.6
	Tc (mK) (at fixed Psat)	139	160	184
	$\frac{T_c^2 P_{sat}}{T_{c,0}^2 P_{sat,0}}$	1 N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1.32
"	Rn (mOhms)	8	12	16
High-Tc TES	Psat (pW)	26	29	(readout limit
	Rn	2*Rn_science	2.5*Rn_science	53
	Тс	2.5*Tc science	-	-

150 GHz	Parameter	Low (pW)	Target (pW)	High (pW)
Science TES	Psat (pW)	6.0	7.5	9.9
	Tc (mK) (at fixed Psat)	139	160	184
	$\frac{T_c^2 P_{sat}}{T_{c,0}^2 P_{sat,0}}$	-	1	1.32
16	Rn (mOhms)	8	12	16
High-Tc TES	Psat (pW)	49	54	(readout limit)
	Rn	2*Rn_science	2.5*Rn_science	1
	Тс	2.5*Tc science	-	

Table 1: Deployment detector parameter targets and acceptable ranges.

CMB-S4 Module Design: Detector Wafer + Readout + Rf Coupling

FY22/23 Flat Modules: Don't Require Superconducting Flex Cable

- **Module prototype:** Use "flat" module to facilitate first "string tests" of prototype detectors and readout
- Optical tests require Rf coupling wafer prototypes: contract in place for prototype LAT MF, delivery this summer, SAT MF2 will follow.
- **Develop module test sites:** Outfit 3 testbeds with readout and test equipment to characterize and develop integrated detector modules.
- Expect to test ~ 6 wafers from in FY22

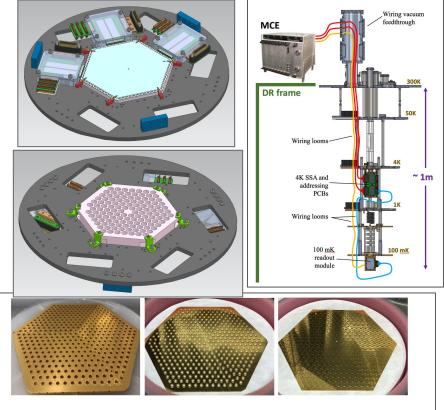


Figure 43: Left: A photonic choke wafer. Center: A waveguide interface plate. Right: A backshort array.

Starting to Use JIRA to Track R&D Planning

CMB-S4

DRM Tracking View ••• Ba

# Issue • + Create issu		Status		Start date D		Due date D	
🗆 1 👻 🛃 DRM-1 1.03 Detectors		IN PROGRESS	TARG	01/Mar/22	0		
DRM-33 1.03.01 Detector Managemen	t	IN PROGRESS	ET STA	01/Mar/22	0	28/Apr/23	0
DRM-42 Finalize FY22/23 SOWs wit	h Fabrication Sites	DONE	RT	21/Mar/22	Θ	29/Apr/22	۵
DRM-43 Advance the detail in the l	CD for LAT MF, SAT MF2 and LAT LF	IN PROGRESS		05/Apr/22	0	29/Jul/22	Θ
DRM-44 Finalize first release of the	Detector Requirements	IN PROGRESS		30/Mar/22	0	31/May/22	0
DRM-53 Refine production schedule	e for SAT Detector wafers	IN PROGRESS		11/Apr/22	0	31/May/22	Θ
DRM-4 1.03.02 ANL Wafer Fabrication		BACKLOG		01/Apr/22	0	28/Apr/23	0
DRM-5 1.03.03 SLAC Wafer Fabrication		IN PROGRESS		01/Mar/22	0		
DRM-6 1.03.04 JPL Wafer Fabrication		IN PROGRESS		02/May/22	Θ	28/Apr/23	Θ
DRM-7 1.03.05 NIST Wafer Fabrication		IN PROGRESS		01/Mar/22	Θ	28/Apr/23	۵
DRM-8 1.03.06 LBNL/SeeQC Wafer Fab	rication	IN PROGRESS		01/Mar/22	0	28/Feb/23	0
DRM-9 1.03.07 UCB/Marvell Wafer Fab	rication	IN PROGRESS		01/Mar/22	0	28/Feb/23	0

CMB-S4 Collaboration Meeting, May 9-13, 2022

Argonne FY22 Deliverables Will Focus on Microstrip Materials and Fabrication Process Development

#	Issue	Status	Target st ↑	Start date D	Due date D
0 1	V DRM-1 1.03 Detectors	IN PROGRESS		01/Mar/22 🛛	
	DRM-33 1.03.01 Detector Management	IN PROGRESS		01/Mar/22 🛛	28/Apr/23 🛛 🕲
	✓ ☑ DRM-4 1.03.02 ANL Wafer Fabrication	BACKLOG		01/Apr/22 📀	28/Apr/23 💿
	C DRM-54 Studies of microstrip materials and fabrication processes	IN PROGRESS	01/Apr/22	02/May/22 🛽	28/Apr/23 🔘
	C DRM-55 First iteration studies of microstrip materials properties and i	IN PROGRESS	01/Apr/22	02/May/22 😳	31/Oct/22 3
	DRM-56 Second iteration studies of microstrip materials properties an	BACKLOG	01/Jul/22 🔇	01/Nov/22	28/Apr/23

JPL/CalTech is Developing a prototype SAT MF2 Detector Wafer t

#	Issue 👻	+ Create issue Status		Target st	↑	Start date D	Du	Due date D	
1	V DRM-1 1.03 Detectors		IN PROGRESS			01/Mar/22	3		
	✓ ☑ DRM-6 1.03.04 JPL Wafer Fabrication		IN PROGRESS			02/May/22	28	/Apr/23	Θ
	DRM-46 Confirm interfaces to SAT MF2 wafer		IN PROGRESS	02/May/22	0	02/May/22	31	/May/22	Θ
	DRM-47 SAT MF2 Bolometer cell layout		BACKLOG	01/Jun/22	Θ	01/Jun/22	30	/Jun/22	Θ
	DRM-48 SAT MF2 Wafer Layout		BACKLOG	01/Jul/22	0	01/Jul/22	31	/Aug/22	0
	DRM-49 Test fixture design		BACKLOG	01/Sep/22	Θ	01/Sep/22	23	/Sep/22	0
	DRM-50 SAT MF2 Wafer Fabrication		BACKLOG	01/Sep/22	Θ	01/Sep/22	01	/Feb/23	
	DRM-51 Assemble wafer into test fixture		BACKLOG	09/Feb/23	Θ	06/Feb/23	28	/Feb/23	0
	DRM-52 Optical testing SAT MF2		BACKLOG	01/Mar/23	0	01/Mar/23	28	/Apr/23	0

LBNL/Seeqc is Developing an S4 Level SAT MF2 Detector Wafer to Deliver to MAT

#	Issue 🖌 🔶 + Cre	ate issue Status	Target st	↑	Start date D	Due date	D
0 1	V DRM-1 1.03 Detectors	IN PROGRESS	5		01/Mar/22		
	✓ ☑ DRM-8 1.03.06 LBNL/SeeQC Wafer Fabrication	IN PROGRESS			01/Mar/22	28/Feb/23	0
	C DRM-15 SAT MF2 Design and Layout	DONE			01/Mar/22	29/Apr/22	0
	C DRM-16 Fabricate first articles of SAT MF2	IN PROGRESS	02/May/22	Θ	02/May/22	30/Jun/22	0
	DRM-17 Test SAT MF2 Wafer LBL, deliver to FNAL	BACKLOG	01/Jul/22	Θ	01/Jul/22	29/Jul/22	
	DRM-18 Design update using FNAL Dark Characterization fe	edback BACKLOG	01/Nov/22	Θ	01/Nov/22	22/Dec/22	0
	C DRM-19 Fabricate second batch of SAT MF2 wafers	BACKLOG	04/Jan/23	0	04/Jan/23	28/Feb/23	

NIST is Developing an S4 Level LAT MF Detector Wafer to Deliver to MAT

#	Issue 👻 + Create issue	Status	Target st	↑	Start date D	Due date D	
0 1	V DRM-1 1.03 Detectors	IN PROGRESS			01/Mar/22	5	
	✓ ☑ DRM-7 1.03.05 NIST Wafer Fabrication	IN PROGRESS			01/Mar/22	28/Apr/23	0
	DRM-20 Design/Layout dual TES TC bolometer sweep Chip (LAT MF)	IN PROGRESS			01/Apr/22	01/Jul/22	0
	DRM-21 Fabrication dual TES TC bolometer sweep Chip (LAT MF) and	BACKLOG	05/Jul/22	0	05/Jul/22	25/Aug/22	0
	DRM-24 Characterization of Bolometer sweeps and pixels chips	BACKLOG	26/Aug/22	0	26/Aug/22	28/Oct/22	0
	DRM-25 Design/layout LAT MF prototype arrays	BACKLOG	31/Oct/22	0	31/Oct/22	22/Dec/22	0
	DRM-26 Fabrication LAT MF prototype arrays (3 arrays, 1 carry along,	BACKLOG	04/Jan/23	Θ	04/Jan/23	14/Apr/23	Θ
	C DRM-27 Deliver LATMF Wafers to FNAL	BACKLOG	21/Apr/23	Θ	21/Apr/23	21/Apr/23	

UCB is Developing an S4 Level LAT LF Detector Wafer to Deliver to MAT

#	🛛 # Issue 🖌		+ Create issue Status		↑	Start date D	Due date D	
0 1	V DRM-1 1.03 Detectors		IN PROGRESS			01/Mar/22 🛛		
	✓ ☑ DRM-9 1.03.07 UCB/Marvell Wafer Fabrication		IN PROGRESS			01/Mar/22 🔇	28/Feb/23	0
	DRM-10 Design LAT LF Single Pixel		DONE			01/Mar/22 🔘	29/Apr/22	0
	DRM-11 Design LAT LF Single Pixel Wafer		DONE	02/May/22	0	18/Apr/22 🖸	31/May/22	0
	DRM-12 Fabricate LAT LF Single Pixel Wafer		IN PROGRESS	01/Jun/22	0	02/May/22 🔘	29/Jul/22	0
	DRM-45 Design complete LAT LF Array		BACKLOG	20/Jun/22	0	20/Jun/22 🛽 🕄	29/Jul/22	0
	DRM-13 Fabricate LAT LF Array		BACKLOG	01/Aug/22	0	01/Aug/22 💿	23/Dec/22)©
	DRM-14 Basic Characterization of Single Pixels		BACKLOG	04/Jan/23	0	04/Jan/23 🖸	28/Feb/23	0

SLAC DMF Construction is on Schedule to Start CMB-S4 Detector Wafer Development in 2023

#	Issue 💙	+ Create issue	Status	Target st ↑	Start date D	Due date D	
0 1	V DRM-1 1.03 Detectors		IN PROGRESS		01/Mar/22		
	✓ ☑ DRM-5 1.03.03 SLAC Wafer Fabrication		IN PROGRESS		01/Mar/22		
	DRM-58 Construction of DMF		IN PROGRESS		01/Mar/22	29/Jul/22	0
	DRM-59 Tool Procurements Complete and D	elivered	IN PROGRESS		01/Mar/22	28/Feb/23	0
	DRM-60 Start of Process Development for Cl	MB-S4 Detectors	BACKLOG	01/Mar/23			

Readout plans

Building detail in JIRA

1st version of 100 mK Ro module

					10
2	V DRM-2 1.04 Readout	02/May/22	8		0
	DRM-28 1.04.01 Readout Management	02/May/22	٢	28/Apr/23	8
	✓ ☑ DRM-29 1.04.02 Cryo 100mK Electronics				
	DRM-85 Create design schematics of the 4-Column 100mK Readout electronics with	01/Aug/22	۲	03/Oct/22	8
	DRM-86 Fabricate at UC Berkeley (with Nb (niobium)) the 4-Column 100mK Readout	02/Aug/22	۲	01/Dec/22	8
	DRM-87 Perform R&D on commercial flex cables	01/Sep/22	8	01/Dec/22	8
	DRM-97 Design schematic and layout of 2-column 100mK readout module with larger	05/May/22	8	01/Aug/22	8
	DRM-98 Fabricate, assembly and test of 2-column 100mK readout module with larger	02/Aug/22	8	03/Oct/22	8
	DRM-99 For detector testing: Deliver 3 sets of 120-TES 2-column 100mK readout mo	05/Oct/22	8	17/Oct/22	8
	😰 DRM-101 For initial debug: Deliver one 20-TES channel 2-column 100mK readout mod	05/May/22	8	01/Jul/22	8
	✓ ☑ DRM-30 1.04.03 Cold 4K Electronics				
	DRM-88 Performance testing of new SA20 SSA's in cryostat at SLAC	01/Sep/22	8	01/Feb/23	8
	DRM-89 Deliver 3 sets of 4K Readout electronics				
	DRM-90 Super-Conducting Chip Procurement	01/Jul/22	8	02/Jan/23	8
	DRM-100 Deliver SA13 SSA modules to FNAL/UIUC with 100mK-to-4K and 4k to 300K	05/May/22	8	25/Jul/22	8
	✓ ☑ DRM-31 1.04.04 300K Warm Readout Electronics Prototype Development				
	DRM-91 Performance testing of first article prototypes	05/May/22	8	20/Feb/23	8
	DRM-92 Firmware and software Development	05/May/22	8	13/Feb/23	8
	✓ ☑ DRM-32 1.04.06 Readout String Test				
	DRM-93 Dilution Refridgerator Modification	01/Sep/22	۲	02/Nov/22	۲
	DRM-94 Full readout string performance testing in cryostat and support for fabricatio	05/May/22	8	20/Feb/23	8

Modules Plan

Building in detail in JIRA

Will use to track progress

Delivery of 100 mK readout modules from SLAC this month will be big milestone: start of module assembly and dark tests!

Coupling wafer delivery will set schedule for optical testing - expected this summer!

- 3 🗸 🖸 DRM-3 1.05 Module Assy & Test
 - DRM-34 1.05.01 Module Assy & Testing Management
 - ✓ ☑ DRM-35 1.05.02 Module Mech Structure Development
 - DRM-61 Design and Fabricate Module Prototype
 - DRM-62 Design and Fabricate Module Assembly Test Jig
 - C DRM-63 Develop and deliver the hardware test summary
 - 🗸 🗹 DRM-36 1.05.03 Optical Coupling
 - DRM-64 Develop and Fabricate set of 5x LAT MF coupling wafers
 - DRM-65 Develop and Fabricate set of 5x LAT MF feed horns
 - DRM-66 Develop and Fabricate set of 5x SAT MF2 coupling wafers
 - DRM-67 Develop and Fabricate set of 5x SAT MF2 feed horns
 - DRM-37 1.05.04 Module Assy
 - > DRM-38 1.05.05 Test Cryostats
 - > 🗹 DRM-39 1.05.06 Test Equipment
 - ✓ ☑ DRM-40 1.05.07 Module Testing
 - C DRM-76 Dark measurements and characterizations of at least 1x wafer of CDFG LAT ...
 - DRM-77 Optical measurements and characterization of at least 1x wafer of CDFG LAT ...
 - DRM-78 Dark measurements and characterization of at least 1x wafer of CDFG SAT M...
 - C DRM-79 Dark measurements and characterization of at least 1x wafers of prototype S...
 - DRM-80 Optical measurements and characterization of at least 1x wafer of prototype ...
 - DRM-81 Dark measurements and characterization of at least 1x wafers of prototype S...

Coupling Wafer / Horn Array Schedule

- Coupling Wafers
 - LAT MF: Set of 5x LAT MF coupling wafers scheduled for delivery from SeeQC by July
 - SAT MF2: If successful, will trigger option in contract for them to fabrication set of 5x SAT MF2 coupling wafers. Delivery in ~Sept/Oct, so could enable SAT MF2 optical tests in Q1 FY23.
 - LAT LF: Requested funds to order a batch of LAT LF SOI wafers, to enable some development of LAT LF coupling wafers by Chapman, to hopefully enable some LAT LF optical tests in early FY23.
- Horn Arrays
 - Modified a set of 3x SO-Modified LAT MF horn arrays that can be used for CDFG module testing.
 These are in Hand!
 - LAT MF: Additionally, have placed PO to have a set of 5x LAT MF CMB-S4 prototypes fabricated. Delivery would be in ~2-months.
 - SAT MF2: design work in progress, would plan to begin fabrication after successful LAT MF fabrication, so sometime this ~summer.

Possible Module Testing Timeline for FY22

CMB-S4

Month	Fermilab	SLAC	UIUC
April	Module mechanical cooldown		Validate readout string performance
Мау	Dark test wafer #1		
June	Dark test wafer #2	Receive flat module	Receive flat module
July	Debug wafer #2 and install cold load	Dark test wafer #4	Dark test wafer #6
August	Dark with cold load test wafer #3	Debug wafer #4	Debug wafer #6
September	Optical test wafer #3	Dark test wafer #5	Dark test wafer #7
October	Optical test wafer #3 CMB-S4 Collaboration	Debug wafer #5 Meeting, May 9-13, 2022	Debug wafer #7

Slide 20

Strawperson Detector fabrication plan builds on fab site expertise, Cost and schedule incorporated into P6, well documented and uses fab site responses to RFI

R&D is making great progress:

- CDFG wafers delivered to Fermilab, ready to assemble into modules this month
- Flat module design allows early module tests, w/o development of superconducting flex
- 3 module testing sites are nearly ready to test flat modules- Major milestone will be receiving 100 mK Readout modules from SLAC
- Rf coupling wafer fab transition to commercial site is in progress, first articles in July
- Detailed layout and interfaces for SAT MF2 and LAT MF are nearing completion
- Next steps :
 - Assembly and testing of CDFG wafers in flat modules
 - Fabrication of prototype CMB-S4 detector arrays for LAT MF, SAT MF2 and LAT LF
 - Assembly and testing of prototype CMB-S4 flat and tower modules

