

SAT Calibration

Kirit Karkare

CMB-S4 Collaboration Meeting May 9-13, 2022

Key Requirements (Design Drivers)

Calibration equipment used for

- Component-level testing during cryostat/optics prototyping
 - E.g. optics stack sidelobe testing
- Verification of SAT performance during commissioning
 - Full-system-level
- Measuring basic instrument parameters to well-defined precision
 - Needed to make CMB maps: bandpasses, beam shapes, pol angles...
- Probing instrumental systematics
 - Needed to constrain r: deep beam maps, sidelobe pickup...

Each use case sets a different requirement on individual pieces of calibration hardware, e.g.:

- To verify that "T→P leakage in the FOV is less than XXX level"...
- ...the far-field thermal chopper must present a load of (250-77 K) with a 24" aperture and spin at 16 Hz (to match or improve on BK beam measurement performance)

Equipment to Build

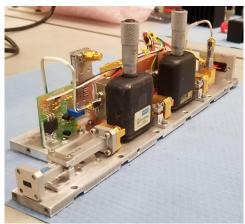
1.07.06.01	Hardware interfaces design	1.07.06.07	Far-field flat mirror
1.07.06.02	Aperture-filling load	1.07.06.08	Far-field thermal chopper
1.07.06.03	Near-field beam mapper	1.07.06.09	Amplified microwave source
1.07.06.04	Fourier transform spectrometer	1.07.06.10	Helmholtz coil
1.07.06.05	Near-field polarization calibrator	1.07.06.11	RF sources and monitoring
1.07.06.06	Calibration mast	1.07.06.12	Star camera

Needed for NA test build, then (possibly) at Pole

Needed at Pole

Equipment Needed for Prototyping and NA Integration

- Design work for lab-based equipment beginning now
 - Aperture-filling load
 - Near-field beam mapper
 - Fourier Transform spectrometer
 - Near-field pol cal
 - Helmholtz coil
- Designs can be straightforwardly adapted from existing equipment
 - Some R&D (e.g. FTS optical coupling)
- Hardware interfaces design cryostat mounting, electrical connections, etc.
- Working with Sites group to ensure that roof can accommodate anticipated equipment
- Working with I&C to outline calibration activities and delineate responsibilities



Equipment Needed in the Field

- For field-based equipment needed to probe systematics in the *r* measurement at extreme map depths...
 - Far-field thermal chopper
 - Mast
 - Flat mirror
 - Amplified microwave sources
- ...we are using archival data and performing *in situ* tests to determine whether the current strategies are sufficient
 - How long of a calibration campaign do we need?
 - Does any equipment need significant redesign? Systematics?
 - Far-field beam maps [Clara], sidelobes [Rito, Christos, Colin +]

Next Steps

- Design work starting now
 - Lab-based calibration equipment (thermal load, near-field beam mapper)
 - Mechanical interface to cryostat
 - What can be shared with LATs?
 - FTS, amplified sources are good candidates
- Connect systematics sensitivity studies to calibrator design
- Identify tests/prototyping that can be coordinated with BA/SO in NA and in the field
- AoA consideration
 - If SATs are sited in Chile, is a similar beam mapping campaign feasible (masts, etc.)? Do the required calibration depths change?
 - Additional component-level calibration for HWP?

