

### **SAT Beam Systematics**

#### Clara Vergès, Kirit Karkare

CMB-S4 Collaboration Meeting May 9-13, 2022





- Brief overview of potential beam systematics and relevant definitions
- Beam requirements update
- Systematics forecasting
  - Preliminary beam map sensitivity results
  - Plans to extend for generic calibration requirements



### Beam Systematics

- Departures from ideal, matched beams within a polarized detector pair can cause leakage from T→P or E→B
  - HWP non-idealities can cause similar leakage
- A large part of this leakage (lowest-order modes) can be modeled/marginalized out with deprojection, but we still need to minimize beam mismatch in hardware and quantify the unmodeled residuals.
- We are now working on setting concrete requirements on
  - Beams/optics using language most relevant for SAT systematics
  - Calibration/measurements needed for verification
- Requirements should be general enough for HWP possibility



**TQU Beam Definitions** 

# $d\Omega \left[ B_T(\mathbf{x})T(\mathbf{x}) + B_Q(\mathbf{x})Q(\mathbf{x}) + B_U(\mathbf{x})U(\mathbf{x}) \right]$



#### Ideal detector:



A dedicated beam definitions document will supplement the SAT optics requirements

References: BK-IV <u>1502.00596</u> BK-XI <u>1904.01640</u> **TQU Beam Definitions** 

# $\int d\Omega \left[ B_T(\mathbf{x}) T(\mathbf{x}) + B_Q(\mathbf{x}) Q(\mathbf{x}) + B_U(\mathbf{x}) U(\mathbf{x}) \right]$

ting, May 9-13, 2022



B detector

0.75 0.50 - 0.8 0.25 0.6 0.00 - 0.4 -0.25 - 0.2 -0.50 -0.75 0.0 0.5 -0.5 0.0 0.75 0.50 -0.2 0.25 -0.4 0.00 -0.6 -0.25 -0.8 -0.50 -1.0-0.75 0.0 0.5 -0.5 0.75 0.04 - 0.03 0.50 0.02 0.25 0.01 0.00 0.00 -0.01 -0.25 -0.02 -0.50 -0.03 -0.75 -0.04 -0.5 0.0 0.5

 $\pm$ 

Ideal pair sum: T only Ideal pair difference: Q only

(B detector is sensitive to -Q)

**TQU Beam Definitions** 

## $d\Omega \left[ B_T(\mathbf{x})T(\mathbf{x}) + B_Q(\mathbf{x})Q(\mathbf{x}) + B_U(\mathbf{x})U(\mathbf{x}) \right]$

ting, May 9-13, 2022



B detector







Slide 6

## Beam Regions and Measurements

- Main beam:
  - Response out to the first minimum
  - FWHM for each frequency set by L1/L2 requirements

#### • Sidelobes

- Near/Mid sidelobes are within the FOV of the instrument, set by the forebaffle cutoff (~30 deg)
- Far sidelobes are outside the FOV

#### Measurements

- Near field
  - Hot thermal chopper in the near field (at aperture & forebaffle) for beam power exiting the window
- Far field (mast on separate building)
  - Thermal chopper for T beams in the FOV
  - Amplified polarized source for QU beams in the FOV
- Mid field (mast adjacent to mount)
  - Amplified polarized source for far sidelobes



### **Refining Beam Requirements**

**L2**: Spurious polarized signal power from beams delivered to the detector modules for integrated polarization maps shall not exceed 10% of the final statistical uncertainty on the angular power spectrum at any multipole from 40 to 200.

Break out into specific measurements at L3 level, e.g.

- In FOV of instrument: Leakage from  $T \rightarrow P$  and  $E \rightarrow B$  shall be < XXX
  - Verified by convolution of TQU maps with T/E skies
- **Far sidelobe region**: Total response in T and P shall not exceed XXX [power]; Leakage from T→P and E→B leakage shall be < XXX
  - Verified by convolution of sidelobe TQU maps with ground template, galaxy, etc.

## How do we set these requirements and design the calibration strategy to verify them?







### **Setting Measurement Requirements**

#### For a systematic of interest...

- 1. Given an estimate of the systematics form and amplitude, estimate
  - a.  $\Delta(r)$  = the bias on r
  - b.  $\sigma(\Delta(r))$  = the uncertainty this bias given depth of calibration measurements
- 2. Set a calibration sensitivity requirement, i.e. target  $\sigma(\Delta(r))$
- 3. Tie this calibration sensitivity requirement to calibrator design and schedule
  - $\rightarrow$  Define hardware to be built
  - $\rightarrow$  Scale from heritage calibration data & refine approach

#### Worked example in the following slides: $T \rightarrow P$ leakage



### **Cross-Spectrum Framework**



BB power spectra corresponding to T  $\rightarrow$  P leakage in BICEP3 Figure 24 of BK18 - Appendix F

We have deep beam maps of all detectors contributing to the BK18 CMB maps, which can be used to estimate T->P leakage.

There may be low-level systematics in the beam maps, so we estimate leakage with the cross spectrum:

Estimate of T->P from beam maps, after deprojection

```
Real BK18 maps
```

BK18: Δ(r) = (1.5 ± 1.1) x 10<sup>-3</sup>

Х

Compare to  $\sigma(r) = 9 \times 10^{-3}$ 

Uncertainty currently driven by noise in CMB maps, but this may not be true at CMB-S4 sensitivity.



### Tie to measurement requirements

- How does our estimate of the bias on r and its precision scale with noise levels in beam maps and CMB maps?
  - For a given CMB map sensitivity, what beam map sensitivity do we need?
  - Informs design of thermal sources and amount of time spent on calibrations
- Using existing calibration data:
  - Quantify typical calibration noise levels and verify scaling with more data
  - Quantify systematics in the measurement and identify where more work is needed to reduce them



### Generic systematics forecasting plan

- Extend framework used in the *r* forecasting paper to determine the required precision on systematics estimates/calibration measurements
  - Add ability to use a template of systematic contamination in cross with real maps
  - Add uncertainties on systematics estimate
  - Power spectrum level meant for quick turnaround
  - By taking foreground separation into account, allows for different calibration requirements at different frequencies
- Variables
  - Frequency-dependent power spectra of systematic contamination
    - Experiments can provide templates for systematics derived from e.g. timestream sims
  - Calibration uncertainties and possibly systematics in the calibration measurement
  - CMB + noise power spectra for various experimental configurations (can feed into AoA)



# Conclusions

- We are refining SAT Beams/Optics requirements to better reflect how we think about systematics and calibration measurements
  - Beam definitions document to supplement requirements
  - Include HWP possibility for AoA
  - Detailed verification methods (coordinated with requirements on SAT Calibration hardware)
- We are extending the existing systematics framework to quantify calibration requirements
  - Start by scaling current estimates of  $T \rightarrow P$  leakage from published BK data
  - Generic enough to set measurement requirements given approximate templates for various systematics





### **Backup slides**



### T→P leakage - beam map noise spectra



Beam map noise auto spectra as a function of number of beam maps



**CMB** noise

is FIXED to BK18 level

## Impact on $\sigma(\Delta(r))$ - CMB noise fixed

- Cross-spectra of  $T \rightarrow P$  leakage noise maps with 499 simulations
- Add these T→P leakage beam noise spectra to data and run standard analysis pipeline

NB: no mean bias is added, so  $\Delta(r) = 0$ NB2: actual values are not *that* important, the *scaling* is

| Number of beam maps        | 10   | 20   | 40   | 60   | 80   |
|----------------------------|------|------|------|------|------|
| σ(Δ(r)) x 10 <sup>-4</sup> | 5.20 | 4.03 | 2.10 | 2.01 | 1.94 |

More beam map data = smaller uncertainty on  $\Delta(r)$ 



### $T \rightarrow P$ leakage - cross-spectra with CMB maps





### Impact on $\sigma(\Delta(r))$ - beam map noise fixed

| Noise in CMB map [µK.arcmin] | 5  | 2.8 (BK18) | 2   | 1   | 0.25 |
|------------------------------|----|------------|-----|-----|------|
| σ(Δ(r)) x 10 <sup>-4</sup>   | 13 | 10         | 8.6 | 8.7 | 8.4  |

