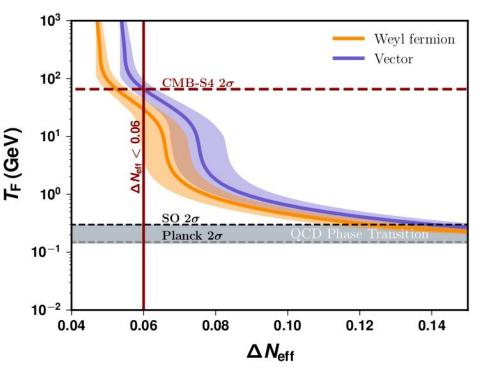
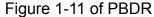
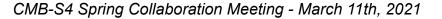


Light Relics

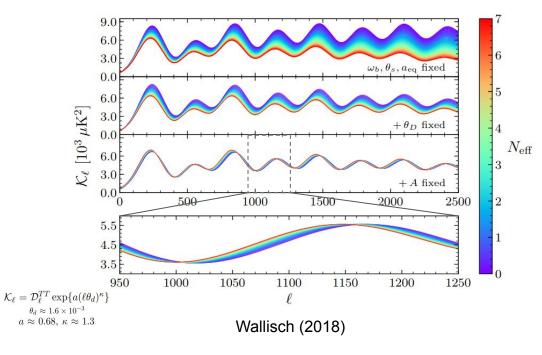
Cynthia Trendafilova Maps to Power Spectra Working Group


Overview


- Our key cosmological parameter and focus is N_{eff} ("effective number of neutrino species").
- Overview of DRAFT tool
- N_{eff} constraints from DRAFT tool
- Update on beam studies
- Join us for the Maps2Cell parallel session (12:30pm PST)



- N_{eff} contribution of light relics to the energy density of the universe
- An important goal of CMB-S4 is to set stringent constraints on light relics.
- CMB-S4 target is σ(N_{eff}) = 0.03: "SR2.0: CMB-S4 shall determine N_{eff} with an uncertainty ≤ 0.06 at the 95% confidence level."



Neff as the high-\ell Science Driver

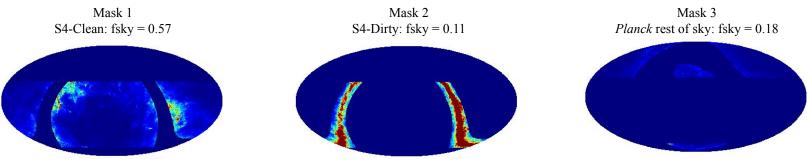
- Improving constraints on N_{eff} requires good measurements of the primary CMB (in particular TE and EE) at high *l*.
- Other science that relies on high *l* measurements also benefits from these improvements.

Forecasting Neff constraints for CMB-S4 surveys -- the DRAFT tool

- Dark Radiation Anisotropy Flowdown Team (DRAFT)
 - foreground modeling and component separation: Srini Raghunathan
 - Fisher forecasting: S.R., Benjamin Wallisch, Joel Meyers
 - bias estimation: S.R., B.W., Cynthia Trendafilova, J.M.
 - beam effects: Dan Grin, Francis-Yan Cyr-Racine
- Modular design:
 - Internal Linear Combination (ILC) code from Srini
 - delensing Fisher code from J.M. & co. (based on arXiv:1609.08143 w/ Daniel Green, Alexander van Engelen)
- Plan to release a user-friendly wrapper incorporating both components.
- <u>GitHub repository</u>
 <u>https://github.com/sriniraghunathan/DRAFT</u>

DRAFT Tool

Inputs	Outputs
 → Noise power for S4-wide → Extragalactic foregrounds (from SPT measurements) → Galactic foregrounds (modeled with pySM3) → Default S4-LAT footprint: fsky = 0.67, el=40 scan strategy → Model for Planck noise 	 ★ ILC noise curves ★ Fisher matrix → forecasted constraints on N_{eff} (and other cosmological parameters) ★ Lensing reconstruction noise ★ Delensed spectra (T,E,B) ★ Lensing-induced covariance ★ Useful plots


Sky masks for $\boldsymbol{\sigma}(N_{eff})$

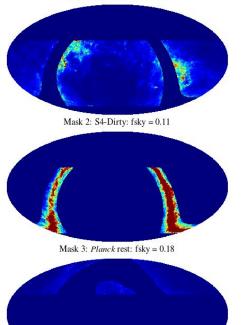
Inputs:

- (A) Noise power: 27, 39, 93, 145, 225 and 278 GHz noise curves for S4-wide. Specs obtained from: https://cmb-s4.org/wiki/index.php/Expected_Survey_Performance_for_Science_Forecasting#Instrument_Definition
- (B) Extragalactic foregrounds: Radio, CIB, tSZ and kSZ power spectra from SPT measurements (George et al. 2015; arXiv: 1408.3161).
- (C) Galactic foregrounds: Dust and Synchrotron power spectra obtained from pySM3 simulations.
 - (a) Default S4-LAT footprint: Covers fsky = 0.67 using el=40 scan strategy.
 - (b) Computed and stored the auto/cross spectra for all bands for **clean/dirty masks** corresponding to different levels of galaxy masking.

Outputs:

- (A) ILC noise curves.
- (B) Cosmological parameter constraints using Fisher forecasts: Specifically σ (Neff) for different levels of galaxy masking (fsky).

S4/Planck masks overlayed on galactic dust emission at 145 GHz.


CMB-S4 Spring Collaboration Meeting - March 11th, 2021

Srini Raghunathan

Summary about $\boldsymbol{\sigma}(N_{eff})$

Mask 1: S4-Clean: fsky = 0.57

S4/Planck masks overlayed on galactic dust emission at 145 GHz.

Mask	Sky fraction f _{sky}	σ (Neff)
S4-Clean	0.57	0.0327
S4 + Planck	0.57 (S4) 0.18 (<i>Planck</i>)	0.0324

Datasets used:

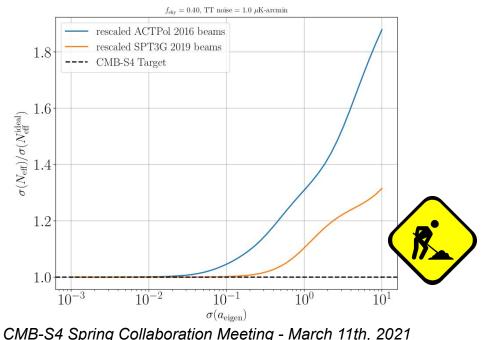
- S4-Clean: delensed S4+*Planck* TT/EE/TE + lensing: $2 \le \ell \le 5000$.
 - Here *Planck* is added to S4-CMB data using inverse variance weighting. This helps to remove the S4 1/f noise.
- *Planck:* TT/EE/TE + lensing: $2 \le \ell \le 2500$.
- If we trusted pySM in the dirty patch (but we don't), we would hit the target.

CMB-S4 Spring Collaboration Meeting - March 11th, 2021

Srini Raghunathan

Combining S4-Wide with S4-Ultradeep

Mask	Sky fraction f _{sky}	σ (Neff)	Comments
S4-Clean	0.57	0.0327	S4-Clean: Patch with low galactic emission.
S4-Ultra deep	0.03	0.0829	S4-Ultra deep: Assume zero galactic emission.
S4-Clean + S4-Ultra deep	0.57	0.0309	Combining S4-Clean and S4-Ultra deep. (Conservative: overlapping region is removed.)
S4-Clean + S4-Ultra deep + <i>Planck</i>	0.57 (S4) 0.18 (<i>Planck</i>)	0.0307	S4-Clean, S4-Ultra deep, and <i>Planck</i> .


- We are investigating the impact of beam uncertainties on meeting our science goals (led by Dan Grin and Francis-Yan Cyr-Racine).
- Because we rely on information from small scales, beam uncertainty will impact the N_{eff} constraints.
- What have current experiments achieved, and how well do we need to do in comparison?

CMB-S4 will require improvements to

beams

 Preliminary results: achieving the desired *σ*(N_{eff}) requires eigenmode amplitudes (beam noise levels) better than current experiments (Dan Grin and Francis-Yan Cyr-Racine).

Light Relics Summary

- We forecast $\sigma(N_{eff}) = 0.0307$ for clean parts of the S4 survey.
- Under active investigation:
 - Effect of beam errors on N_{eff} constraints
 - Biases from residual galactic foregrounds
- Attend the Light Relics parallel session for further discussion:
 - Thursday, March 11th, 2021
 - 12:30pm PST 2:00pm PST