

South Pole Infrastructure, Integration, & Commissioning

Amy Bender, Erik Nichols 2021-03-11

South Pole Scope

- Power & networking infrastructure; data transfer off-site
- Ice pads (foundations) for all new facilities
- SAT towers & control rooms
- Lab buildings for SATs
- SPLAT High bay
- On-site assembly & install of all on-site equipment & facilities
 - Includes SPLAT, SATs, DM, DAQ/OCS
- On-site integration and commissioning
- Logistics for on-site activities (in coordination with Antarctic Support Contract/ASC)
 - Cargo from Port Hueneme to the South Pole
 - Personnel deploying to South Pole
 - Vehicles at South Pole
 - Safety!

Driving Requirements

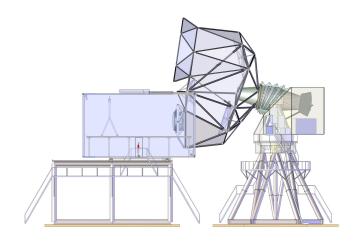
Design:

- Environmental: temperatures, snow accumulation, wind
- Ground pickup prevention
- Radio-quiet environment
- Spaces: for assembly and integration of receivers, maintenance throughout operations, data management system, office/work space
- Power for SPLAT/SATs/DM systems
- On-site networking between buildings & DM system, connection to satellite upload

Logistics:

- Austral summer access
- Cargo pallet size
- Shipping deadlines

Infrastructure Considerations

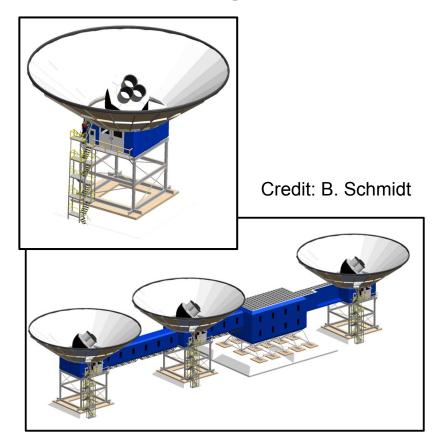

- Provide power & network connections to SPLAT, SATs
- Connect on-site network to off-site transfer system
- Inputs are mostly taken from other subsystems
 - Need to check values and links in Jama, and add backup documentation
- Other items
 - High-purity helium and nitrogen bottles
 - Liquid nitrogen for DR cold traps

	Average power	
Equipment	Chile	SP
	Total [kW]	Total [kW]
LATs (including receiver and readout but not DAQ)	210	105
SATs (including receiver and readout but not DAQ)	0	264
Cooling system	30	14
DAQ, compute, and office	44	34
Data management	10	50
Site power	30	20
Total	304	487

	LAT	SAT x 6	Total
Full Data Rate [Gbps]	1.62	0.5	-
Compressed Data Rate [Gbps]	0.57	0.17	-
Compressed Data Rate [TBytes/Day]	6.11	1.88	8

Preliminary Design: SPLAT High Bay

- Designed for LATCR & LATR assembly and installation on the telescope
- Three modes:
 - Rear door open for receipt of cargo
 - Front door open and building docked with telescope for receiver install/maintenance
 - Both doors closed and building moved away to allow clearance for telescope motion
- 8 m x 8 m x 14.3.m
- Includes glycol cooling loop for compressors
- Designed in parallel with SPLAT on MSIP award
- Going forward: Add requirements details from CMB-S4 to Jama and refine design


Preliminary Design: SAT Facility

SAT tower & control room

- Mount and ground shield installed on top
- Tower compensates for snow accumulation and minimizes ground pickup from nearby structures
- Compressors & electronics housed in control room (includes glycol cooling loop)
- Proposed design: BART tower & control room

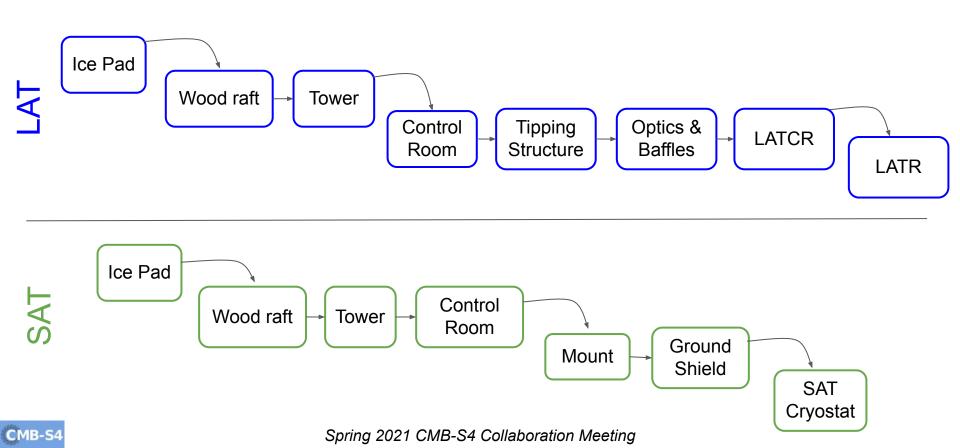
Laboratory buildings

- Space for receiver assembly & maintenance
- 3 SATs per support building
- Use existing MAPO building
- Second building will essentially duplicate MAPO

Site Layout

- Telescopes will be located in the 'dark sector'
- Re-use MAPO & upcoming BART, add 2 more SATs
- SPLAT location dictated by ground pickup requirements
- Additional restrictions from IceCube strings & station operation zones
- Proximity to main station

Once locations are refined, can plan for fiber & power distribution


DM system currently planned for main station lab/work space.

Credit: B. Schmidt

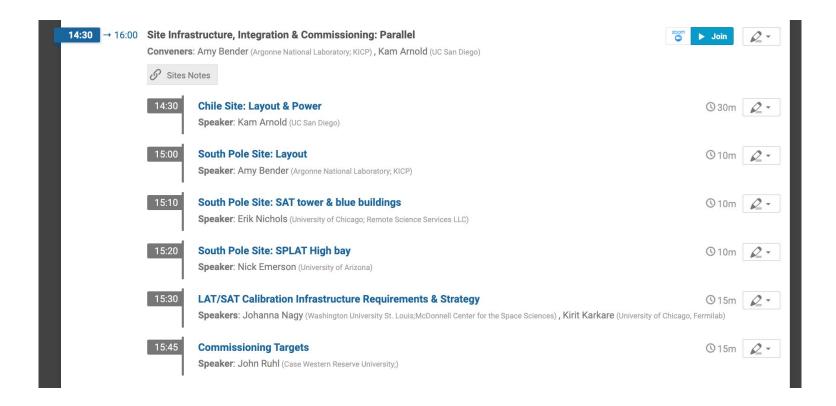
On-site Assembly

Commissioning

Commissioning: Tasks that need to happen prior to acceptance of integrated telescope+receiver etc and transition to operations. Verifies functionality of experiment.

Calibration: Tasks that can happen before or after transition to operations. Measurements that are needed for analysis.

Commissioning


Holography
Pointing check & models
Detector & readout operation
NET verification (detector
response & system noise)
Initial beam checks (main beam
shape & side lobes)
Magnetic & RFI sensitivity
DM/DAQ integrated checks

Calibration

Bandpass
High S/N beam measurements
Polarization calibration
Temperature calibration

Need to start working with LAT & SAT to link up the targeted levels of precision and acceptance for each of these tasks to refine schedule.

Parallel Session

Summary

- Continue focus on defining requirements & their values/ranges and interfaces in next few months
- Refine site layout
- Work with other subsystems to define the commissioning requirements
 - Check infrastructure locations for calibration equipment (holography tower, calibration masts)
- Further in the future, refine designs for High Bay and updated buildings
- Lots of project related documentation in preparation for NSF status review & PDR/CD-1
 - Schedule, cost backups, safety

Backup

Site Power Backup

LAT Component	Average Power	Max Power
	kW	kW
PT420 backed DR (LD400)	15	16.5
PT420 #2	13	14.5
PT420 #3	13	14.5
TDM readout	5.2	-
Misc. Electronics	2	-
DAQ system	1	2
Telescope drives	20	60
Glycol cooling loop	2	2
Building power large equipment		20
Building power small equipment		10
LAT total	101.2	146.7

SAT Component	Average Power	Max Power
	kW	kW
PT410 backed DR	9.2	11
PT 60	3.3	_
PT420	13	14.5
TDM readout	1.7	-
Misc. Electronics	2	2
DAQ system	1	2
Telescope drives/mount	10	10
Glycol cooling loop	2	2
SAT Total	42.2	46
Lab Building	-	30
$SAT \times 6 + 2 Lab Buildings$	313	337