Systematic Biases on N_{eff}, H_0, and Other Parameters due to Nonlinear CMB Lensing

Colin Hill
Columbia University
Flatiron Institute - Center for Computational Astrophysics

CMB-S4 Collaboration Meeting, Zoom, March 2021

arXiv:2103.05582
w/ Fiona McCarthy, Mathew Madhavacheril
CMB Lensing

Extremely important effect on primary CMB power spectra at high ell

\[C_{\ell}^{TT} \]
\[\ell(\ell+1)C_\ell/(2\pi) \text{ [\(\mu\)K]}^2 \]
- lensed
- unlensed
- SO+Planck noise (incl. fg.)
- S4+Planck noise (incl. fg.)

\[C_{\ell}^{EE} \]
\[\ell(\ell+1)C_\ell/(2\pi) \text{ [\(\mu\)K]}^2 \]
- lensed
- unlensed
- SO+Planck noise (incl. fg.)
- S4+Planck noise (incl. fg.)

\[C_{\ell}^{TE} \]
\[\ell(\ell+1)C_\ell/(2\pi) \text{ [\(\mu\)K]}^2 \]
- lensed
- unlensed

McCarthy, JCH, & Madhavacheril (2021)

Simons Obs. post-comp.-sep. noise computed by JCH in 1808.07445
CMB-S4 post-comp.-sep. noise computed by JCH in 1907.04473
CMB Lensing

Nonlinear evolution and baryonic effects alter the lensing power

Seven hydro sims:

McCarthy, JCH, & Madhavacheril (2021) see also McCarthy et al. (2020)
Potential Parameter Biases

This can produce surprisingly large biases on, e.g., H_0, ω_c, and N_{eff} for upcoming CMB experiments (not current!)

Usual approach in primary CMB analyses to date: “set it (default Halofit or HMcode in CAMB or CLASS) and forget it”

This will not suffice for CMB-S4! (or Simons Observatory)

McCarthy, JCH, & Madhavacheril (2021)
Potential Parameter Biases

This can produce surprisingly large biases on, e.g., H_0, ω_c, and N_{eff} for upcoming CMB experiments (not current!)

- 1.6σ bias on H_0
- 1.6σ bias on ω_c
- 1.2σ bias on N_{eff}
- 2σ bias on ω_c

Not an issue for Planck or for current ACT/SPT data

McCarthy, JCH, & Madhavacheril (2021)
Mitigation Methods

Three strategies

1) Explicitly cut all TT data at $\ell > 3000$ (w/ small penalty in final parameter error bars) — 13% increase in $\sigma(N_{\text{eff}})$ for S4
Mitigation Methods

Three strategies

1) Explicitly cut all TT data at $\ell > 3000$ (w/ small penalty in final parameter error bars) — 13% increase in $\sigma(N_{\text{eff}})$ for S4
Mitigation Methods

Three strategies

1) Explicitly cut all TT data at ell>3000 (w/ small penalty in final parameter error bars) — 13% increase in $\sigma(N_{\text{eff}})$ for S4

2) Marginalize over parameters describing baryonic effects
Mitigation Methods

Three strategies

1) Explicitly cut all TT data at $\ell > 3000$ (w/ small penalty in final parameter error bars) — 13% increase in $\sigma(N_{\text{eff}})$ for S4

2) Marginalize over parameters describing baryonic effects

Works for all sims tested:

![Graph showing Abs(Bias)/σ vs. ℓ_{max}](image)
Mitigation Methods

Three strategies

1) Explicitly cut all TT data at ell>3000 (w/ small penalty in final parameter error bars) — 13% increase in \(\sigma(N_{\text{eff}}) \) for S4

2) Marginalize over parameters describing baryonic effects — but pay a penalty in parameter error bars: 13% increase in \(\sigma(N_{\text{eff}}) \) for S4 [coincidentally same as above]
Mitigation Methods

Three strategies

1) Explicitly cut all TT data at $\text{ell}>3000$ (w/ small penalty in final parameter error bars) — 13% increase in $\sigma(N_{\text{eff}})$ for S4

2) Marginalize over parameters describing baryonic effects — but pay a penalty in parameter error bars: 13% increase in $\sigma(N_{\text{eff}})$ for S4 [coincidentally same as above]

3) Delens the T and E-mode maps using the reconstructed κ map (and/or external tracers like the CIB)
 —> Most robust, data-driven approach, and can actually improve the error bars on parameters [Green et al. (2016)]
 —> Challenge: need very high-L κ information!

McCarthy, JCH, & Madhavacheril (2021)
Aside: Boltzmann Accuracy

The default accuracy settings in CAMB or CLASS will no longer suffice for upcoming CMB data sets — higher-accuracy lensing is needed (easy to fix!)

Even for current data from ACT/SPT, using high-accuracy settings is necessary for precise χ^2 comparison of ΛCDM to some extended models (EDE, etc.)

McCarthy, JCH, & Madhavacheril (2021)
Take-Home Messages

1) Baryonic feedback effects must be accounted for in upcoming primary CMB power spectrum analyses
2) Crank up your precision settings in CAMB/CLASS
3) What other effects do we need to be thinking about at this level of precision? [for discussion]

Thanks!