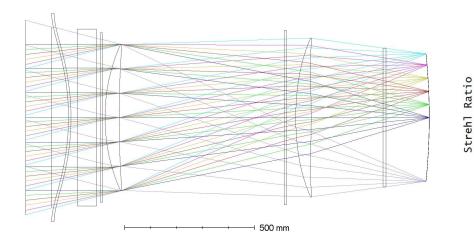


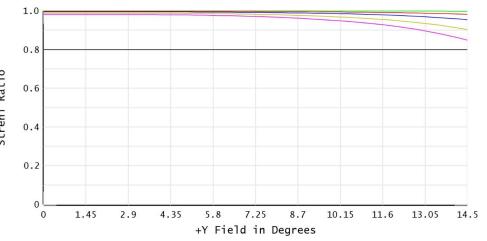
SAT Zemax Lens Design Update

F. Matsuda, A. Stark

Optics Design


- Optics designs for
 - LF (30/40 GHz), MF (85/145 and 95/155 GHz), and HF (220/270 GHz)
 - Two lens designs (objective and field)
 - Three candidate lens materials (exact index values need to be updated)
 - HDPE (index = 1.55)
 - Alumina (index = 3.10)
 - Silicon (index = 3.40)
- Preliminary Baseline Design
 - FOV: 29 degrees
 - LF and MF tubes
 - HDPE lenses → large diameter, proven AR coating technology
 - Focal plane: 490 mm
 - $\circ \quad \text{HF tubes} \quad$
 - Silicon lenses \rightarrow low loss at high frequencies
 - Focal plane: 422 mm

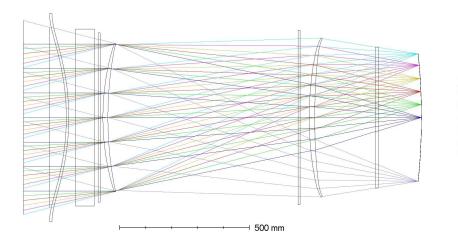
Design Requirements


- FOV diameter: 29 degrees
- Focal plane
 - Curvature: ~2400 mm
 - Study by Tony: <u>link</u>
 - LF/MF diameter: 490 mm
 - HF diameter: 422 mm
- Aperture stop located behind objective lens
- HDPE / Alumina lens designs
 - Aperture stop diameter: 560 mm
 - Optical diameter: 610 mm
- Silicon lens design
 - Aperture stop diameter: 440 mm
 - Optical diameter: 445 mm

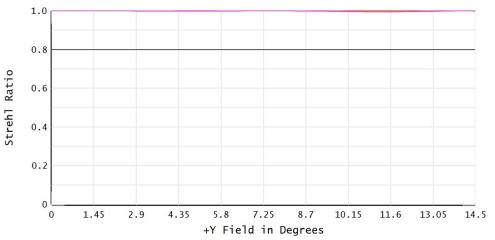
HDPE Lens Design

35, 95, 150, 220, 280 GHz

- FP diameter: 490 mm
- Strehl ratio: > 0.84
- Optical length: ~1554 mm
- Lens thickness (center)
 - Objective: ~55 mm
 - Field: ~59 mm

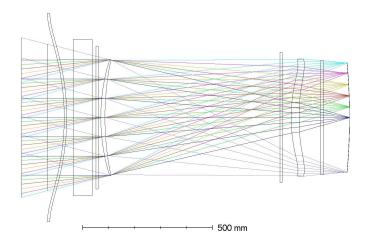


- Telecentricity: \leq 1.6 deg
- F# (sine def)
 - F# avg (sagittal and tangential):
 1.71 (center) ~ 1.80 (edge)
 - Sagittal and tangential difference: $|\Delta(F_{sag}-F_{tan})| ≤ 0.10$

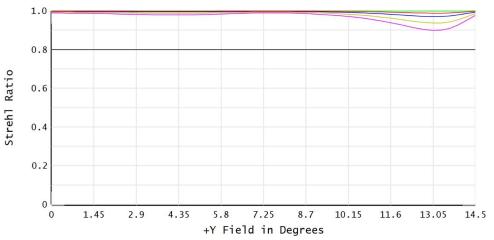

Alumina Lens Design

35, 95, 150, 220, 280 GHz

- Strehl ratio: > 0.99
- Optical length: ~1533 mm
- Lens thickness (center)
 - Objective: ~19 mm
 - Field: ~21 mm



- Telecentricity: $\leq 0.2 \text{ deg}$
- F# (sine def)
 - F# avg (sagittal and tangential):
 1.69 (center) ~ 1.79 (edge)
 - Sagittal and tangential difference: $|\Delta(F_{sag}-F_{tan})| ≤ 0.12$


Silicon Lens Design

35, 95, 150, 220, 280 GHz

- Strehl ratio: > 0.89
- Optical length: ~1264 mm
- Lens thickness (center)
 - Objective: ~16 mm
 - Field: ~30 mm

- Telecentricity: \lesssim 1.6 deg
- F# (sine def)
 - F# avg (sagittal and tangential):
 1.79 (center) ~ 2.07 (edge)
 - Sagittal and tangential difference: $|\Delta(F_{sag}-F_{tan})| ≤ 0.34$

Preliminary Conclusions

• LF / MF designs

- HDPE design
 - High optical performance but requires thick (~60 mm) lenses
 - HDPE lenses are most conservative choice due to proven AR coating technology
- Alumina design
 - Highest optical performance with margin
 - Flat focal plane is potentially also sufficient
 - AR coating R&D on-going

• HF designs

CMB-S

- Silicon design
 - High optical performance but F# uniformity is larger than other designs
 - Mainly constrained by maximum silicon lens size (~445 mm optical)
 - Third lens (like SO) may help with this but needs study to confirm
 - Known lowest loss (out of the candidate materials) at HF
 - Focal plane size limited (~422 mm) due to lens size as well
- Possible candidate: HDPE design
 - If ~60 mm thick HDPE lenses are proven acceptable in terms of loss
 - Requires detailed cold loss measurements
- F# and detector coupling needs to be verified / optimized in near future