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Actual systematics issues have been very hard to predict

e Hu, Hedman, Zaldarriaga considered systematics for B-mode experiments
way back in 2002. Includes many effects that we still worry about, but
BICEP/Keck has had success without following their prescribed solutions.
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FIG. 5: All effects for a beam and coherence of FWHM = (81n2)'/2¢ = 10'. (a) Polarization distortion for an rms of A = 10~2
from calibration a, rotation w (0.6° rms), pointing (pa,ps) (2.5” rms) , and spin flip (fa,fs). (b) Temperature leakage for an
rms of A = 10" from monopole (vya,7s), dipole (da,ds) and quadrupole (g) terms. The “b” component of each effect is shown
with dashed lines.
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Many of these problems are greatly reduced by having an instrumental beam that resolves the
primary anisotropies (FWHM < 10'). To reach the ultimate goal of an inflationary energy scale
of 3 x 10'® GeV, polarization distortion fluctuations must be controlled at the 1072 — 1073 level
and temperature leakage to the 107* — 10~2 level depending on effect. For example pointing errors
must be controlled to 1.5” rms for arcminute scale beams or a percent of the Gaussian beam width
for larger beams; low spatial frequency differential gain fluctuations or line cross-coupling must be
eliminated at the level of 10™* rms.

e BICEP beam is much larger than 10 arcmin, differential gain (for T—P
leakage) is few percent, etc. Achieved systematics control through a
combination of instrument design, calibration, and analysis mitigation.




Intensive calibration enables analysis mitigation
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Figure 4 from BK-XI (2019)
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Systematics deprojection

Project modes out of polarization maps that
correspond to five difference beam modes.

Deprojection coefficients from CMB maps match
expectation from beam calibration.

(Differential
beamwidth not
deprojected
because it isn’t
present for our
detectors/optics)
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Figures from BK-III (2015)
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BB signal
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Undeprojected residuals

T—P leakage from sub-percent differential beam
residuals (after deprojection) is measured
through simulations
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Figure 8 from BK-XI (2019)
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e Solid lines = auto-spectrum of simulated leakage
e Points with error bars = cross-spectrum between
simulated leakage and real CMB polarization maps
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Advantage of deep, narrow maps

Jackknives are the final defense against unantig:ipateg systematics. At fixed effort, the error
bar on a jackknife bandpower scales as N,/ f fl/\“ ~ fll/\‘ so an additive systematic at a
specific amplitude will be detected more readily in a deep, narrow map.

Higher signal-to-noise detections of a systematic allows us to identify it, remove it with filters,
and design targeted jackknives to assess whether the filtering is adequate.

e \We can deproject differential gain, pointing, and ellipticity and compare results to beam
map calibration.

e Undeprojected residuals represent the terms that are poorly measured. Attempts to
debias in the likelihood are comparatively crude.

Similarly, the repetitive BICEP/Keck scan strategy allows us to concentrate our sensitivity to
systematics. The high symmetry of this scan strategy helps reject some systematics and
allows for construction of jackknives targeting them.



Summary / recommendations

Use experience of Stage 2 and 3 experiments on instrumental systematics,
calibration, and analysis mitigation.

Ground CMB-S4 systematics simulations in actual data from existing
experiments. This means more analysis of current data in many cases!
Before adding a systematic to the simulations, need to consider how this will
be addressed through calibration and analysis mitigation. It is easy to corrupt
the maps with systematics, hard to restore them to science quality. This is an
argument against including systematics in “mainline” data challenges / in
favor of including them in focused studies.
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