

Instrument Model

Sara M. Simon 03/11/21

Overview of current instrument model

- Instrument definition is codified into a set of dictionaries output to a human-readable file (toml)
 - \circ bands \rightarrow bandpasses + noise parameters for each band
 - $\circ \quad \text{wafers} \rightarrow \text{detector layout on wafer}$
 - \circ tubes \rightarrow wafer layout in tube, optical platescale
 - \circ telescopes \rightarrow tube layout in telescope, beam information
 - $\circ \quad \text{ cards} {\rightarrow} \text{ dummy readout information}$
 - $\circ \quad \text{crates}{\rightarrow} \text{ dummy readout information}$
 - \circ detectors \rightarrow pixel, band, wafer, beam, polarization, readout, and full position information
- All inputs variables and their definitions are described here
- Current description is simplistic→ Can build in additional complexity as design matures, especially for systematic studies

Two types of modifications

- 1. Modify the instrument model directly \rightarrow This is good for global values, changing wafer layouts, changing optics tube frequency mappings, etc.
- 2. Modify values in the output toml file \rightarrow This is good for values that you want to vary detector by detector

Optics

- Single Gaussian FWHM for each band → could be modified for each individual detector
- Focal plane projected onto sky with a simple scale factor → could be modified for each individual detector
- LAT optics tube frequency mapping balanced between optical quality and uniform coverage with scan strategy→ may need updating as we learn more/update the scan strategies
- Boresight rotation information captured in main simulation code, not instrument code

Wafer Layouts

- Rhombus and hex-packed layout options, with pixel sizes and numerology
- Wafer-to-wafer spacing
- Clocking of wafers is all the same, but can be adjusted once defined
- All these can be updated as our knowledge of the design matures

Readout Model

- Readout model is a dummy model (better suited for uMUX right now)→ Not actually used in simulations at this point
- Would need if we wanted to do studies like crosstalk
- General structure could be updated in instrument definition code
- Mapping to detectors could be done in instrument definition code or with mapping files

Bandpasses

- Currently top-hat bandpasses with lower+higher band edges and center frequency
 - Set by flat-band bandpasses used to calculate white noise
- Could adapt to take a bandpass from a file
 - Would want to make sure that the noise calculator does this as well
 - Simulated bandpass files from Sonnet/Microwave Office could be used
 - Could also add effects from optics (e.g. stop efficiency variation with frequency)
 - Could also add in systematic variations

White Noise

- Base NET from upgraded BoloCalc at elevation of 50°
 - CHLAT Psat optimized for 35° elevation, others to 50° elevation
- Elevation dependence fit parameters (based of BoloCalc output) normalized to 50° elevation
- Could integrate BoloCalc directly into model in future, but BoloCalc interface too complex right now

$$NET = \frac{A}{\sin \theta_{el}} + C$$

Instrument Noise

• Add an instrumental 1/f noise component (does not include atmosphere)

$$\text{PSD} \propto \frac{f^{\alpha} + f^{\alpha}_{knee}}{f^{\alpha} + f^{\alpha}_{min}}$$

•
$$\alpha = 1, f_{knee} = 50 \text{ mHz}, f_{min} = 0.01 \text{ mHz}$$

• Can be adjusted for each individual band

Discussion

- Are there any critical pieces that are missing?
- How can we tighten the loop between instrumentation changes and implementation in the instrument model?
- Should think about what modifications to the instrument model we need to accommodate high priority systematics