Cosmic Birefringence

Yuto Minami (RCNP, Osaka Univ.)

Cosmic Birefringence

The Universe filled with a "birefringent material"

➢ If the Universe is filled with a pseudo-scalar field, \$\phi\$,(e.g., an axion field) coupled to the electromagnetic tensor via a Chern-Simons coupling: $\tilde{F}^{\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma}$

$$\mathcal{L} \supset -\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{4} g_{\phi\gamma} \phi F_{\mu\nu} \tilde{F}^{\mu\nu} \quad \cdots (1)$$

$$\beta = \frac{g_{\phi\gamma}}{2} \int_{emission}^{observer} dt \,\dot{\phi}$$
$$= \frac{g_{\phi\gamma}}{2} (\phi_{observer} - \phi_{emission})$$
...(2)

Difference of the field values

rotates the linear polarization!

Turner & Widrow (1988)

Cosmic Birefringence Fujita, Minami, Murai, &Nakatsuka with Cosmic Microwave Background (CMB) (2020)

Birefringence from background and fluctuation

 $\phi_{LSS}(t = t_{LSS}, d_{LSS}\hat{\boldsymbol{n}}) = \bar{\phi}_{LSS} + \delta\phi_{LSS}(\hat{\boldsymbol{n}}) \qquad \phi_{obs}(t = t_0, \boldsymbol{0}) = \bar{\phi}_{obs} + \delta\phi_{obs}$

$$\beta(\hat{\boldsymbol{n}}) = \frac{g_{\phi\gamma}}{2} \left(\frac{\Delta \bar{\phi} + \delta \phi_{obs}}{\beta \text{ (isotropic)}} - \frac{\delta \phi_{LSS}(\hat{\boldsymbol{n}})}{A_{\alpha}(\text{anisotropic})} \right) \cdots (3)$$

CMB-S4 2021 Spring Collaboration Meeting

CMB-S4 2021 Spring Collaboration Meeting

EB correlation from the cosmic birefringence

Lue, Wang & Kamionkowski (1999); Feng et al. (2005, 2006); Liu, Lee & Ng (2006)

 \succ Cosmic birefringence convert E < -> B as

$$\begin{pmatrix} E_{\ell m} \\ B_{\ell m} \end{pmatrix}^{obs} = \begin{pmatrix} \cos(2\beta) & -\sin(2\beta) \\ \sin(2\beta) & \cos(2\beta) \end{pmatrix} \begin{pmatrix} E_{\ell m} \\ B_{\ell m} \end{pmatrix} \dots$$

(4)

$$\langle C_{\ell}^{EB,obs} \rangle = \frac{1}{2} \left(\langle C_{\ell}^{EE} \rangle - \langle C_{\ell}^{BB} \rangle \right) \sin(4\beta) + \langle C_{\ell}^{EB} \rangle \cos(4\beta)$$

Need to assume a model! Vanish at the LSS ... (5)
Need to assume a model! Vanish at the LSS ... (5)
Traditionally, one would find β by fitting $C_{\ell}^{EE,CMB} - C_{\ell}^{BB,CMB}$ to

✓ Traditionally, one would find β by fitting C_ℓ^{--,one} - C_ℓ^{--,one} to the observed C_ℓ^{EB,obs} using the best-fitting CMB model
 ✓ Assuming the intrinsic (C_ℓ^{EB}) = 0, at the last scattering surface (LSS) (justified in the standard cosmology)

The Biggest Problem in observations: Miscalibration of detectors

Wu et al. (2009); Komatsu et al. (2011); Keating, Shimon & Yadav (2012)

Polarisation-sensitive detectors on the focal plane

Are the polarisation-sensitive detectors rotated by miscalibration, α, on the sky coordinate (and we did not know)?

rotated by an angle " α " (but we do not know it)

We can only measure the sum, $\alpha + \beta$

The past measurements with the traditional way

Systematic errors on α limited the measurements

Measurement	meta + stat. + sys. (deg.)	
Feng et al. 2006	$-6.0 \pm 4.0 \pm$??	First measurement
WMAP Collaboration, Komatsu et al. 2009; 2011	$-1.1 \pm 1.4 \pm 1.5$	
QUaD Collaboration, Wu et al. 2009	$-0.55 \pm 0.82 \pm 0.5$	
Planck Collaboration 2016	$0.31 \pm 0.05 \pm 0.28$	Uncertainty in
POLARBEAR Collaboration 2020	$-0.61 \pm 0.22 +??$	the calibration of α has been the major
SPT Collaboration, Bianchini et al. 2020	0.63 ± 0.04 + ??	
ACT Collaboration, Namikawa et al. 2020	0.12 ± 0.06 + ??	
ACT Collaboration, Choi et al. 2020*	0.09 ± 0.09 + ??	limitation
*used optical model, "as-designed" angles	_	L

Other way to calibrate?	Crab nebula, Tau A (Celestial source)	0.27 deg. (Aumont et al.(2018))
	Wire grid (Planck / Tajima et al. (2011))	1.00 deg.? / 0.8 deg.
2021/03/09	CMB-S4 2021 Spring Collaboration Meeting	

Simultaneous determination of α and β

- The key idea: use the polarised Galactic foreground emission as a calibrator
 - \succ FG is rotated by α
 - \succ CMB is rotated by $\alpha + \beta$

Minami et al. (2019); Minami (2020);Minami & Komatsu (2020a); Minami & Komatsu (2020b)

$$\langle C_{\ell}^{EB,o} \rangle = \frac{\tan(4\alpha)}{2} \left(\langle C_{\ell}^{EE,o} \rangle - \langle C_{\ell}^{BB,o} \rangle \right) + \frac{\sin(4\beta)}{2\cos(4\alpha)} \left(\frac{\langle C_{\ell}^{EE,CMB} \rangle - \langle C_{\ell}^{BB,CMB} \rangle}{\text{Known accurately}} \right) \quad \dots (6)$$

$$+ \frac{1}{\cos(4\alpha)} \left(\langle C_{\ell}^{EB,fg} \rangle \right) + \frac{\cos(4\beta)}{\cos(4\alpha)} \left(\langle C_{\ell}^{EB,CMB} \rangle \right).$$

> When we ignore the intrinsic *EB* correlations of the FG and the CMB, we can determine both α and β

The latter is justified but the former is not

⇒ Using Planck PR3 data, $\beta = 0.35 \pm 0.14$ [Minami & Komatsu 2020b] ⇒ $\beta > 0$ at 99.2%C.L. (2.4 σ)

How about the foreground *EB*?

If the intrinsic foreground (FG) *EB* exists, our method interprets it as a miscalibration angle α

- ➤ Thus, $\alpha \rightarrow \alpha + \gamma$, where γ is the parameter of the intrinsic *EB*➤ The sign of γ is the same as the sign of the foreground *EB*
- > We thus can determine:

FG: $\alpha + \gamma$ CMB: $\alpha + \beta$ $\beta - \gamma = 0.35 \pm 0.14$ deg.

> There is evidence for the dust-induced $TE_{dust} > 0 \& TB_{dust} > 0$; then, we'd expect $EB_{dust} > 0$ [Huffenberger et al.], i.e., $\gamma > 0$. If so, β increased further...

 \succ We can give a lower bound on β

We would be happy if CMB-S4 can test this

With CMB channels

- At least, we need to observe bright FG region
 - \succ FG is needed to determine α
- Most of the ground based experiments didn't observe foreground dominated regions

ACT DR4 coverage [Choi et.al (2020)] Minami et al. (2019); Minami (2020)

Demonstration with a LiteBIRD like experiment

Foreground level (band) and CMB power spectra [Choi et.al (2020)]

2021/03/09

With FG-dominated channels

We can use strong foreground signal even with Galactic mask

 \succ We can determine β

Assuming Simons Observatory Large
 Aperture Telescope's 280 GHz channel

 α and *γ* are well determined

Planck's LR42 mask (fsky~0.4)

Summary

Cosmic birefringence: difference of field values with Chern-Simons coupling rotates linear polarization of the CMB photons

$$> \beta = \frac{g_{\phi\gamma}}{2} (\phi_{obs} - \phi_{LSS})$$

- > Calibration uncertainty on detector rotation α has limited the measurements of β
- When we use the Galactic foreground as a calibrator, we can determine α and β simultaneously

 $> \beta = 0.35 \pm 0.14$

- The measurements with CMB-S4 are highly expected
 - Reducing calibration uncertainty with the ground calibrator
 - Observing FG-dominated regions and channels

Bonus:

> Does β = 0.35 ± 0.14 deg. disturb the measurement of primordial *B*-mode?

CMB-S4 2021 Spring Collaboration Meeting

Backups