# Non-Gaussianity with the CMB bispectrum

### What is the bispectrum and why study it?

Harmonic equivalent of the three point function:

$$\langle a_{\ell_1,m_1} a_{\ell_2,m_2} a_{\ell_3,m_3} \rangle = \mathcal{G}_{\ell_1,\ell_2,\ell_3}^{m_1,m_2,m_3} b_{\ell_1,\ell_2,\ell_3}$$

- Primordial non-Gaussianity:
  - Are the initial conditions Gaussian? What is the physics of inflation?
- Intrinsic CMB bispectrum:
  - non-Gaussianity induced by non-linear evolution of perturbations.
- To study CMB secondaries
- To study the galactic emissions

## What can we learn from primordial non-Gaussianity?

- Unique window into physics of early universe
  - Highly complementary to B mode searches
- Theoretical models of inflation give us predictions

$$\langle \zeta(k_1)\zeta(k_2)\zeta(k_3)\rangle \propto shape \times f_{NL}$$

- Three commonly studied shapes:
  - Local Multi-field inflation?
  - Orthogonal / Equilateral c<sub>s</sub> ≠ 1?
  - Folded Non-bunch Davies initial conditions?



### Beyond scalar non-Gaussianity

Scalar non-Gaussianity

$$\langle \delta(k_1)\delta(k_2)\delta(k_3)\rangle \propto Shape \times f_{NL}$$

Tensor-scalar non-Gaussianity

$$\langle \delta(k_1)\delta(k_2)h(k_3)\rangle \propto Shape \times f'_{NL}$$
  
 $\langle \delta(k_1)h(k_2)h(k_3)\rangle \propto Shape \times f''_{NL}$ 

Tensor non-Gaussianity

$$\langle h(k_1)h(k_2)h(k_3)\rangle \propto Shape \times f_{NL}'''$$

Probe h modes through CMB B mode polarisation

### Beyond scalar non-Gaussianity

- In most inflationary models these types of non-Gaussianity are vanishingly small
- However can be large in a range of interesting models.
  - Partially massive fields
  - When tensor modes are not sourced from vacuum fluctuations eg. Axion-gauge inflation models
  - Models with violations of spatial isometries
- Generically: Means to test origin measurement of r!

### **S4 Constraints**

| Shape $(\zeta\zeta\zeta)$ | Current        | S4 constraint |
|---------------------------|----------------|---------------|
| Local                     | $-0.9 \pm 5.1$ | 1.9           |
| Equilateral               | $-26 \pm 47$   | 22.1          |
| Orthogonal                | $-38 \pm 23$   | 9             |
| Shape $(\zeta \zeta h)$   | Constraint     |               |
| Local                     | $-48 \pm 28$   | 0.79          |
| Equilateral               | _              | 16            |
| Orthogonal                | _              | 4.4           |

Shiraishi et al (2018) Planck Collaboration (2019) DSR (2019)

### Impact of lensing on PNG searches





### Impact of lensing on PNG searches

### Local non-Gaussianity SNR for measurements with ~8uk' noise with delensing!



Nearly optimal! With no biases

Coulton et al (2020)

# Revisiting the intrinsic bispectrum

"Non-primordial-, non scalar- non-Gaussianity"

Coulton (on arXiv later this week)

### Beyond leading order

- Usually only consider first order perturbation theory
  - Gaussian initial conditions lead to Gaussian anisotropies
  - Scalars, tensor and vectors do not mix.
- Second order effects breaks these properties!
- Heuristically we can expect:

$$B^{non-linear}(k_1, k_2, k_3) \sim P_{\Phi}(k_1)P_{\Phi}(k_2) + \dots$$

• This could be similar size to  $f_{NL} \sim 1$ 

### Parity odd intrinsic bispectrum

 Bispectrum between induced, second order B modes and T/E modes

$$\langle BTT \rangle, \langle BET \rangle, \langle BEE \rangle \neq 0$$

- Bispectrum has odd parity:
  - Non zero for  $\ell_1 + \ell_2 + \ell_3 = \text{odd}$
- B modes are only sourced by vectors and tensors!
- SNR will increase as lensing B modes are removed! (allows SNR larger that  $\langle TTT \rangle, \langle TEE \rangle, \langle TTE \rangle, \langle EEE \rangle$ )
- Numerically solve the 2<sup>nd</sup> order Boltzmann eqs. using SONG

Benke et al (2010,2011) Fidler et al (2015) Pettinari (2013),Pettinari et al (2013,2016)

### The parity-odd intrinsic bispectrum

#### **Equilateral bispectrum slice**



- Evolution and Scattering:
  - Non-scalar modes from nonlinear evolution
  - Modulation of the scattering rate by bulk flows and large scale perturbations
- Quadratic term:
  - the non-linear relation of temperature at 2<sup>nd</sup> order
  - redshifting terms
- Post-recombination:
  - Propogation through inhomegenous universe

### The intrinsic bispectrum components

#### Contributions to the squeezed intrinsic bispectrum by mode type



### Is this detectable with S4?

Parity odd SNR for S4 (assuming 80% of lensing B mode power removed)



Solid Lines: SNR wrt to  $\mathcal{C}_{max}$ 

### Conclusions

- S4 will extend beyond Planck's constraints on primordial non-Gaussianity:
  - Step towards f<sub>NL</sub> ~ 1
  - Large improvements for tensor-scalar non-Gaussianity
  - Tool to test any detection of r
- S4 can find first hints of the intrinsic bispectrum!
  - With delensing ~3.5σ measurement
  - In the future, a probe of non-scalar perturbations!