Probing the Baryon Content of BOSS DR15 Galaxies with ACTPol and the SZ Effects

Eve Vavagiakis, Stefania Amodeo, Nicholas Battaglia, Rachel Bean, Victoria Calafut, Patricio Gallardo, Michael Niemack & the ACT Collaboration Cornell Physics and Astronomy Departments

The Sunyaev-Zel'dovich Effects

kSZ effect probes peculiar velocities

$$\left[(\Delta T/T)_{\rm kSZ} = -\tau_{\rm g} \ v_{\rm r} \right]$$

- Constrain neutrino mass sum, σ_{o} , *f*, dark energy, models of modified gravity
- tSZ effect: sensitive to integrated line-of-sight pressure profile, can break optical depth degeneracy
- Measure ionized gas profiles, constrain feedback mechanisms, trace baryons: Amodeo et al. 2020, arXiv:2009.05558, Schaan et al. 2020, arXiv:2009.05557
- Pairwise correlation statistic: temperature differences average out contamination

Data

- ACT+*Planck* coadded maps f150, f090 (Naess et al. 2020, arXiv:2007.07290)
- ILC Boss-N, D56 Compton-y, CMB+kSZ maps (Madhavacheril et al. 2019, arXiv:1911.05717)
- Selected BOSS-SDSS DR15 galaxies, three disjoint luminosity bins for joint SZ analysis

Vavagiakis, Gallardo, Calafut, Amodeo et. al., arXiv:2101.08373

Pairwise kSZ Statistic & tSZ Stacking

- Aperture photometry on source-centered submaps w/2.1' radius aperture
- Beam correction for f090, ILC maps
- Stack in luminosity bins for tSZ measurement w/JK
- Pairwise estimator with temperature signal pairs for kSZ measurement w/bootstrap

Pairwise estimator: statistical detection over all pairs of galaxies sharing similar separation

Cumulative

DR5 f090

0.0

3.75

0.0

Vavagiakis, Gallardo, Calafut, Amodeo et. al., arXiv:2101.08373

Pairwise kSZ Results

Calafut, Gallardo, Vavagiakis et. al., arXiv:2101.08374

tSZ results

- Average Compton-y in 2.1' aperture from tSZ stacking results
- Herschel data used for dust contamination correction (Amodeo et al. 2020, arXiv:2009.05558),
- Measurements consistent across frequencies and maps
- Higher S/N (up to 12 sigma) in higher L bins as expected

Vavagiakis, Gallardo, Calafut, Amodeo et. al., arXiv:2101.08373

Optical depth comparisons

- Compton-y results used to estimate optical depths from hydrodynamical sim model (Battaglia 2017, 1607.02442)
- "Theoretical tau" estimated for case in which baryons trace dark matter
- kSZ and tSZ results agree within 1σ in 2 bins, differ at 2-3 σ in highest S/N bin
- Estimates from the SZ effects account for ¹/₃ to all of the theoretically predicted baryon content

Vavagiakis, Gallardo, Calafut, Amodeo et. al., arXiv:2101.08373

CMB

photon

Comptonized photon

Energetic

electron

Hot plasma

T Mroczkowsk

arXiv:1811.02310

Optical depth comparisons

- Step towards empirical y-tau relationship from tSZ and kSZ measurements
- Results are consistent with the hydrodynamical sim model in two bins, while the kSZ results in the highest L bin fall below the model line
- Promising approach for estimating the mean pairwise velocity from pairwise momentum measurements

electron

Vavagiakis, Gallardo, Calafut, Amodeo et. al., arXiv:2101.08373

Review

- 5.4σ measurement of pairwise kSZ in ACT+*Planck* data with SDSS DR15 (arXiv:2101.08374)
- Check models with empirical y-tau relationship from tSZ and kSZ measurements (arXiv:2101.08373)
- Step towards extracting mean pairwise velocity from pairwise momentum measurements
- Complementary kSZ and tSZ analysis from ACT with different methodology: Amodeo et al. 2020, arXiv:2009.05558, Schaan et al. 2020, arXiv:2009.05557
- Higher S/N with improved data: constrain $\sum m_v$, σ_8 , *f*, dark energy, models of modified gravity
- Learn about baryon distribution, evolution of galaxies

Backup

The Sunyaev-Zel'dovich Effects

Motivation: Missing baryons

- Observations suggest gas in halos contains fewer baryons than expected
- Thought to be hiding in the diffuse WHIM
- tSZ effect is sensitive to spatial distribution of ionized gas and baryon content
- Compare optical depth estimates from SZ effects with theoretically predicted baryon content
- Amodeo et al. 2020, arXiv:2009.05558, Schaan et al. 2020, arXiv:2009.05557

Context: Improvements upon 2017 work

Data

- 5 cumulative, 5 disjoint luminosity bins
- Cuts chosen based off 2017 work
- 3 equally-spaced bins selected for joint analysis (kSZ and tSZ)
- Sources were cut based on a point source mask, galactic plane mask, and CMB noise level cut

				DR5 f150, DR5 f090			DR4 ILC		
Bin	Luminosity $\mathrm{cut}/10^{10}L_{\odot}$	$M_{\rm vir} \ {\rm cut}/10^{13} M_{\odot}$	$\langle M_* \rangle / 10^{11} M_{\odot}$	Ν	$\langle L \rangle / 10^{10} L_{\odot}$	$\langle z \rangle$	Ν	$\langle L \rangle / 10^{10} L_{\odot}$	$\langle z \rangle$
$L43^*$	L > 4.30	M > 0.52	2.21	343647	7.4	0.49	190551	7.4	0.50
$L61^*$	L > 6.10	M > 1.00	2.61	213070	8.7	0.51	118852	8.7	0.51
$L79^*$	L > 7.90	M > 1.66	3.17	103159	10.6	0.53	57828	10.6	0.54
L98	L > 9.80	M > 2.59	3.84	46956	12.8	0.56	26308	12.8	0.57
L116	L > 11.60	M > 3.70	4.50	23504	15.0	0.58	13277	15.0	0.59
$L43D^*$	4.30 < L < 6.10	0.52 < M < 1.00	1.57	130577	5.2	0.48	71699	5.2	0.48
$L61D^*$	6.10 < L < 7.90	1.00 < M < 1.66	2.08	109911	6.9	0.48	61024	6.9	0.48
L79D	7.90 < L < 9.80	1.66 < M < 2.59	2.61	56203	8.7	0.51	31520	8.7	0.52
L98D	9.8 < L < 11.60	2.59 < M < 3.70	3.18	23452	10.6	0.54	13031	10.6	0.55

Vavagiakis, Gallardo, Calafut, Amodeo et. al., arXiv:2101.08373

The sum is on i<j

This means algorithmic complexity of $O(n^2) \rightarrow Computational challenge$.

Complementary to other kSZ statistics: 1810.13423

 $\hat{p}_{\rm th}(r,z) = -\frac{T_{CMB}}{c}\bar{\tau}V(r,z)$

$$c_{ij} = \hat{r}_{ij} \cdot \frac{\hat{r}_i + \hat{r}_j}{2} = \frac{(r_i - r_j)(1 + \cos\alpha)}{2\sqrt{r_i^2 + r_j^2 - 2r_i r_j \cos\alpha}}$$

Null tests

Shuffle decrements Null tests

The pairwise correlation

L43 -> lum > 4.3e10 Lsun L61 -> lum > 6.1e10 Lsun L79 -> lum > 7.9e10 Lsun

- High luminosity cut -> more massive galaxies, higher signal
- Higher luminosity cut -> lower galaxy count -> bigger errorbar

Pairwise kSZ Fitted ${\cal T}$

- Tau as a function of mass cut
- Highest SNR=5.4

Tracer	DR4 ILC			DR5 f090				DR5 f150				
sample	$\overline{ au}$ (×10 ⁻⁴)	$\chi^2_{ m min}$	PTE	SNR	$ar{ au}$ (×10 ⁻⁴)	$\chi^2_{ m min}$	PTE	SNR	$\bar{ au}$ (×10 ⁻⁴)	$\chi^2_{ m min}$	PTE	SNR
L43D	0.18 ± 0.32	14	0.67	0.5	0.83 ± 0.34	12	0.81	2.2	0.46 ± 0.24	<mark>21</mark>	0.24	1.7
L61D	0.69 ± 0.34	25	0.08	1.8	1.07 ± 0.35	15	0.59	2.7	0.72 ± 0.26	11	0.85	2.5
L43	0.47 ± 0.12	22	0.20	3.6	0.65 ± 0.13	13	0.71	4.5	0.54 ± 0.09	17	0.42	5.1
L61	0.74 ± 0.15	18	0.40	4.4	0.82 ± 0.17	16	0.53	4.4	0.69 ± 0.11	10	0.92	5.4
L79	0.78 ± 0.23	21	0.21	3.0	0.79 ± 0.27	12	0.79	2.6	0.88 ± 0.18	13	0.76	4.6

arXiv:2101.08374

tSZ results

- Measurements consistent across frequencies
- Herschel data used for dust contamination correction (Amodeo et al. 2020, arXiv:2009.05558), core-excised approach explored

