

# **CMB-S4 Preliminary Baseline Design Validation -Measurement to Science: Light Relics**

Srinivasan Raghunathan

11 March 2021

Work done with: Joel Meyers, Cynthia Trendafilova, and Benjamin Wallisch.



### Baseline setup

- Goal:
  - Developing **Dark Radiation Anisotropy Flowdown Team (DRAFT)** tool to forecast cosmological parameter constraints.
  - Forecast  $\boldsymbol{\sigma}(N_{eff})$  from S4-Wide Chilean LAT (+ delensing LAT).
  - $\circ$  N<sub>eff</sub> as a driver of S4-Wide frequency coverage.
  - Biases from residual foregrounds. (Ben will cover this in the next talk in a bit more detail).
- Instrument specs:
  - S4-Wide (Chilean LAT):

https://cmb-s4.org/wiki/index.php/Expected\_Survey\_Performance\_for\_Science\_Forecasting#Instrument\_Definition

- We also investigate the importance of using the delensing LAT for  $\boldsymbol{\sigma}(N_{eff})$ .
- https://cmb-s4.org/wiki/index.php/Delensing\_sensitivity updated\_sensitivities, beams, TT\_noise
- **Bands:** 30, 40, 95, 145, 225, 278 GHz.

## DRAFT tool

- GitHub repo link:
  - <u>https://github.com/sriniraghunathan/DRAFT</u>
  - <u>https://github.com/sriniraghunathan/cmbs4\_fisher\_forecasting</u>
  - Delensing code from Joel Meyers (Green et al. 2016, arXiv: <u>1609.08143</u>).
  - Currently integrating all of this into one.
- What does the tool do?
  - Optimally combines data from different bands using noise + foreground signals in different bands.
    - How are the foregrounds modelled?
      - Extragalactic foregrounds: Radio, CIB, tSZ and kSZ power spectra from SPT measurements (George et al. 2015, arXiv: <u>1408.3161</u> and Reichardt et al. 2020, arXiv: <u>2002.06197</u>).
      - Galactic foregrounds: Dust and Synchrotron power spectra obtained from pySM3 simulations.
  - Computes lensing noise curves using residual noise.
  - Combines delensed CMB spectra and lensing spectra to forecast cosmological parameter constraints using Fisher formalism.
  - Estimates biases in cosmological parameters due to residual foregrounds also using Fisher formalism.



# N<sub>eff</sub> as a driver of S4-Wide frequency coverage

#### **Datasets:** Delensed S4 TT/EE/TE + *Planck* + lensing: $\sigma(N_{eff})/\sigma(N_{eff})$ : Ben, Joel, and Srini



- Legend: LFX-MFY-HFZ  $\rightarrow$  X low freq. 30/40 GHz tubes; Y medium freq. 90/150 GHz tubes; Z high freq. 220/270 GHz tubes.
  - Baseline DSR configuration: LF2-MF12-HF5.
- LF1-MF14-HF4, highlighted with a circle, gives the best result for all authours.
- LF3-MF12-HF4 is the worst. Adding more LF detectors does not help.
- All configurations but LF3-MF12-HF4 are better than the baseline configuration.
  - But the difference in performance is at sub-per cent level (even for LF1-MF14-HF4).
  - Furthermore, from SZ study, which cares mostly about temperature and hence CIB, we know that reducing the number of HF detectors is sub-optimal.



### Sky coverage / masks: el\_40 footprint



Baseline masks: Maximises the "Clean" sky area.



#### S4-Wide: ILC residuals



## Constraints with S4-Wide: $\sigma(N_{eff})$





Mask 2: S4-Dirty: fsky = 0.11



S4/*Planck* masks overlayed on galactic dust emission at 145 GHz.

| Mask          |        | Sky fraction f <sub>sky</sub>       | <b>σ</b> (Neff) |  |
|---------------|--------|-------------------------------------|-----------------|--|
| S4-Cle        | ean    | 0.57                                | 0.0327          |  |
| S4-Di         | rty    | 0.11                                | 0.0815          |  |
| S4            |        | 0.57 (S4-Clean)<br>0.11 (S4-Dirty)  | 0.0303          |  |
| S4 + <i>I</i> | Planck | 0.68 (S4)<br>0.18 ( <i>Planck</i> ) | 0.0299          |  |

#### Datasets used:

- S4-Clean: delensed S4+*Planck* TT/EE/TE + lensing:  $2 \le \ell \le 5000$ .
  - Here *Planck* is added to S4-CMB data using inverse variance weighting. This helps to remove the S4 1/f noise.

 $\circ \ell_{max} = 3000$  (temperature) and 5000 (polarisation) for lensing noise estimation.

- S4-Dirty: delensed S4 TT/EE/TE + lensing:  $30 \le \ell \le 5000$ .
- *Planck:* TT/EE/TE + lensing:  $2 \le \ell \le 2500$ .

## Constraints with S4-Wide: $\sigma(N_{eff})$



S4/*Planck* masks overlayed on galactic dust emission at 145 GHz.

| Mask        | Sky fraction f <sub>sky</sub>       | <b>σ</b> (Neff) |
|-------------|-------------------------------------|-----------------|
| S4-Clean    | 0.57                                | 0.0327          |
| S4-Dirty    | 0.11                                | 0.0815          |
| S4          | 0.57 (S4-Clean)<br>0.11 (S4-Dirty)  | 0.0303          |
| S4 + Planck | 0.68 (S4)<br>0.18 ( <i>Planck</i> ) | 0.0299          |

• S4-Clean: delensed S4+*Planck* TT/EE/TE + lensing:  $2 \le \ell \le 5000$ .

• Here *Planck* is added to S4-CMB data using inverse variance weighting. This helps to remove the S4 1/f noise.

 $\circ \ell_{max} = 3000$  (temperature) and 5000 (polarisation) for lensing noise estimation.

- S4-Dirty: delensed S4 TT/EE/TE + lensing:  $30 \le \ell \le 5000$ .
- *Planck:* TT/EE/TE + lensing:  $2 \le \ell \le 2500$ .

## Constraints with S4-Wide: $\sigma(N_{eff})$

Mask 1: S4-Clean: fsky = 0.57



Mask 2: S4-Dirty: fsky = 0.11



S4/*Planck* masks overlayed on galactic dust emission at 145 GHz.

| Mask     | Sky fraction f <sub>sky</sub> | <b>σ</b> (Neff) |  |
|----------|-------------------------------|-----------------|--|
| S4-Clean | 0.57                          | 0.0327          |  |
| S4-Dirty | 0.11                          | 0.0815          |  |

#### But can we trust numbers from the dirty patch?

- How reliable are the galactic emission simulations close to the plane of our galaxy?
- Can we model the residual foregrounds properly to remove any potential bias?

• Here *T unce* is added to 54-Civib data using inverse variance weighting. This helps to remove the S4 1/f noise.

 $\circ \ell_{max} = 3000$  (temperature) and 5000 (polarisation) for lensing noise estimation.

• S4-Dirty: delensed S4 TT/EE/TE + lensing:  $30 \le \ell \le 5000$ .

*Planck:*  $TT/EE/TE + lensing: 2 \le l \le 2500$ .

#### Can the delensing LAT help us remove the dirty patch?

Specs: https://cmb-s4.org/wiki/index.php/Delensing sensitivity - updated sensitivities, beams, TT noise



#### Residuals: S4-Wide vs S4-Ultra deep (V3R0 25)

# $\sigma(N_{eff})$ : Combining S4-Wide and S4-Ultra deep

| Mask                                                      | Sky fraction<br>f <sub>sky</sub>    | <b>σ</b> (Neff)    | Comments                                                                                                 |
|-----------------------------------------------------------|-------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------|
| S4-Clean                                                  | 0.57                                | 0.0327             | S4-Clean: Patch with low galactic emission.                                                              |
| S4-Clean                                                  | 0.54                                | 0.0333             | S4-Clean: Removing overlap with S4-Ultradeep.                                                            |
| S4-Ultra deep                                             | 0.03<br>(0.04)                      | 0.0829<br>(0.0717) | S4-Ultra deep: No galactic emission.                                                                     |
| S4-Clean<br>+ S4-Ultra deep                               | 0.57                                | 0.0309<br>(0.0302) | <b>Combining S4-Clean and S4-Ultra deep.</b><br>(Conservative: overlapping region removed from S4-Wide.) |
| S4-Clean<br>+ S4-Ultra deep<br>+ <i>Planck</i>            | 0.57 (S4)<br>0.18 ( <i>Planck</i> ) | 0.0307<br>(0.03)   | S4-Clean, S4-Ultra deep, and <i>Planck</i> .                                                             |
| S4-Clean + S4-Dirty<br>+ S4-Ultra deep<br>+ <i>Planck</i> | 0.68 (S4)<br>0.18 ( <i>Planck</i> ) | 0.0287<br>(0.0281) | S4-Clean, S4-Dirty, S4-Ultra deep and <i>Planck</i> .                                                    |



## Fisher: Biases due to residual galactic foregrounds

Corresponds to emission in BICEP/SPT field

#### Not likely a problem for current experiments.

Corresponds to emission in the clean region



- We are currently seeing pretty large biases due to residual galactic emissions.
- Solutions:
  - Apply  $\ell_{max}$  cut but this can increase error bars.
  - Marginalise over residual galactic emission amplitude and spectral tilt. Are there reasonable priors that we can assume?
  - Other techniques Better component separation, ++
- More discussion about this in Ben's talk.