Need to quantify impact on delensing/r from LAT systematics

- High-level view ("flowdown"/ "design validation"): requirements at technical, measurement, and science levels.
- At upcoming reviews, variants of the question "how much sigma(r) degrades if requirement on XX is missed by 10%?" with XX being some instrument design aspects/calibration uncertainties.
- Examples*
 - Near sidelobes, far sidelobes
 - Beam leakage (monopole, and up)
 - Gain variation
 - Readout crosstalk
 - Detector time constant
 - Polarization angle/efficiency
 - Polarized atmosphere
 - Pointing error
 - Others?

CMB-S4

Path towards quantifying impact on delensing/r from LAT systematics

• Generate simulations

- Time-domain effects (expensive to make)
- Reduce computation if averaged over wafer/band for certain classes of systematics
 - Jeff M. and student Alec H. started to implement making systematics maps for effects that could be captured in a beam map (e.g. crosstalk, sidelobes)
 - Not all effects can be captured this way
- Related discussion at Technical to Measurement parallel
 - How to build confidence in these simulations given data from current experiments?

Analysis needs

- Two runs with same CMB/foreground/noise, but with and without systematics maps \rightarrow no sample variance to quantify bias.
- Prioritize effects that are hard to model.
- Do runs on multiple realizations with flat-sky code (faster); select a few to do curved-sky analysis for completeness.
- Will require people time/resources, both to get organized and to do the work to validate the designs.

Sessions relevant to LAT systematics

- Large Aperture Telescopes parallel (happening concurrently)
- Design Validation: Technical to Measurement parallel
 ACT, SPT, Simons Array
- Site infrastructure, integration & commissioning parallel
 - LAT/SAT calibration infrastructure requirements & strategy