
CMB-S4 Spring Collaboration Meeting

DAQ PBDR/Near-term
WBS 1.08.03 

Nathan Whitehorn
Michigan State



CMB-S4 Spring Collaboration Meeting

● Commodity 10 Gbit/s 
Ethernet trunks forming 
private-fiber DAQ-only 
network

● Synchronous Ethernet + 
PTP for timing (details later)

● IP as universal protocol
● On order 100-200 nodes per 

broadcast domain 
(dominated by estimated 
number of readout boards 
on LAT)

● Segregated broadcast 
domains for high-speed and 
low-speed DAQ

2

DAQ Private Network Design 



CMB-S4 Spring Collaboration Meeting

Key goals:

● Leverage the existing stage-3 DAQ designs where applicable

○ SO and SPT-3G designs show no architectural obstacles to scaling to CMB-S4 requirements

○ Community familiarity

● Portability/minimal setup requirements

○ Allows use in university and national-lab detector testing labs from the beginning

■ Prevents second-system syndrome, shaking out bugs early

■ Limits duplicated development costs for “lab” and “real” DAQ

■ Key feature in success of SPT-3G deployment

○ Lowers deployment risk
● Use COTS hardware and IP-based digital signalling everywhere: lowers cost, parts and schedule risk
● Use well-known (in community) languages, shared with DM: C++ and Python

3

Technical Design Goals: DAQ



CMB-S4 Spring Collaboration Meeting

Problem scope:
● Data rate increasing from ~20k detectors per 

site to 300k: order-of-magnitude in data rate
● Readout technology in flux from fMux (3G) and 

µMux (SO) to as-yet-undesigned TDM 
hardware

4

Moving from stage-3 to stage-4: 
Detector Readout DAQ

Reusability:
● Order-of-magnitude increase in data rate and 

new readout electronics mean stage-3 code is 
probably not useful.

● Architecture seems scalable however; 
synthetic testing of order-of-magnitude higher 
sampling rates on SPT-3G readout meet S4 
throughput requirements

Summary:
● Stage-3 DAQ systems demonstrate required throughput, can serve as an architectural and 

resource-use guide for S4
● Limited applicability of stage-3 DAQ code and hardware for detector readout
● Substantial development effort required, but little risk of unknown problems



CMB-S4 Spring Collaboration Meeting 5

Technical Design Overview: DAQ

Key features:
● Handoff to readout electronics is an IP stream
● 100% COTS hardware: development plan is 

software-only
● Goal is common hardware at South Pole and 

Chilean sites
● Archival-ready files to DM system, also over IP

Detector Readout Board

Detector Readout Board

Detector Readout Board

Receiver Switch L1 Data Aggregator 
Computer

L1 Data Aggregator 
Computer

L2 Data Aggregator 
Computer

Data Management

“Slow” Data 
from OCS 
(telescope 

pointing etc.)



CMB-S4 Spring Collaboration Meeting 6

Technical Design Overview: Timing 
System

Key features:
● Low- and high-level timing signals: support electronics of varying complexity
● Single timing domain per site
● Meets requirements from known readout: Following design from SPT-3G (10 MHz + IRIG) and SO 

(near clone of this + PTP), limiting risk
● Assumption is that we will need to support asynchronous data (at minimum between 

housekeeping objects), and thus time stamps will be required for each data field

Meinberg Grandmaster 
GPS Time card (outputs 
PTP, IRIG, 10MHz, 
PPS, … highly 
configurable

Boundary clock: PTP 
timing to IRIG, 10MHz, 
PPS (configurable) Boundary clock and Grandmaster 

aligned to 16ns (fluctuates within 
100ns spec)



CMB-S4 Spring Collaboration Meeting 7

Technical Design: Low-Rate DAQ

Key features:
● Diverse collection of low-rate, low-data-volume sensors (structure thermometers, pressure 

gauges, power supply voltages, etc.)
● Handoff point in software
● Uses same OCS system as control, pushing small amounts of data through pub/sub system
● Design follows SO, substantial code reuse
● Designed for in-lab deployment as well as at-site
● Low barrier-to-entry agent production



CMB-S4 Spring Collaboration Meeting 8

Choices and Planning
Interaction with Readout:

● Need to have a defined interface basically ~ now (plan to 
have prototype readout boards in ~ 6 months)

● Do we want to support MCEs?
● How do we ensure that we get an emulator for test design?

Support for labs:
● Need to start defining a hardware/software package for use 

(post-downselect) in test labs
● Integration testing / support process??

Integration test stand:
● Building at MSU (contact for account, still some hoops to 

jump through with university IT and firewalls)
● Software development testbed for multiple users
● Full system: switch, clock, 
● Can plug in your widget locally or (post-COVID) happy to 

host people for plug-fest testing


