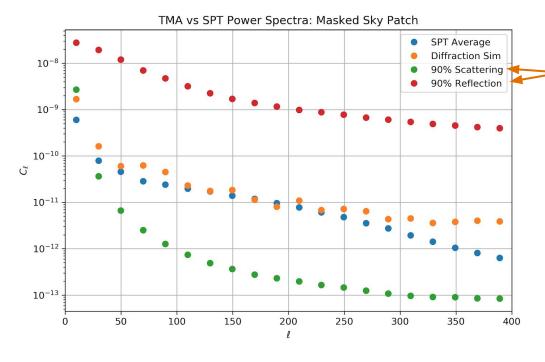


## **LAT Baffle Surface Finishes**


#### **Fabricating and Testing Scattering Materials**

# **CWRU+WUSTL** (Gullett, King, May, Nagy, and Ruhl)



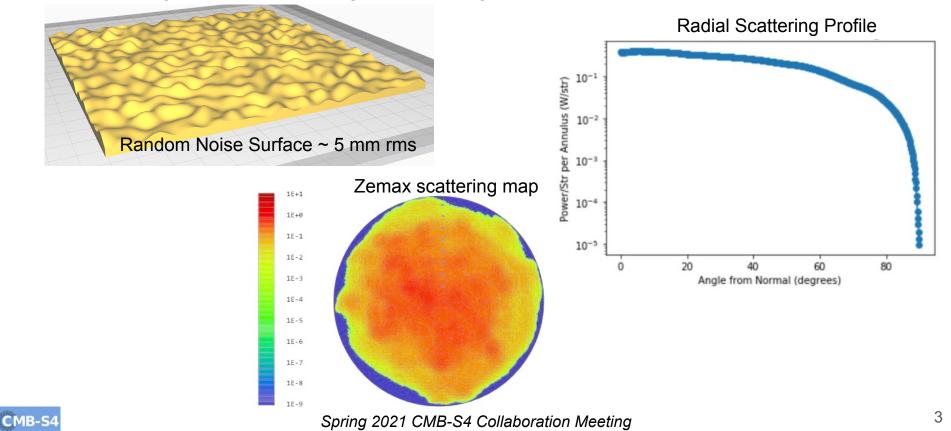
## **Motivation for Scattering Baffles**

Comparison of sidelobe power spectra from Zemax simulations and SPT sidelobe map (assume 1% Lambertian window scattering)



Cabin wall treatment in Zemax sims of TMA Single Pixel

TMA "reflective walls" is ~100x worse than SPT


SPT Calculated and measured agree fairly well

TMA "scattering walls" is ~10x better than SPT



## Simulating a scattering surface

Significant scattering to wide angles from random noise surface



## Prototyping Random Noise Surfaces

• Rapid prototyping to make small samples for measurements

**3D-Printed Mold** 



Hydraulic Press



**Aluminum Samples** 



• Exploring different methods for mass production





## LAT Calibration Hardware Overview and Discussion



## LAT-CH Scope (WBS 1.06.05)

- LAT-CH scope:
  - Optics tube testing (North America)
  - North American test build
  - On-site validation (commissioning)
  - On-site calibration (observing)
- Does NOT include
  - Calibration hardware for testing individual modules (MAT WBS)
  - Calibration measurements that do not require specialized hardware (e.g. noise, Psat, etc)

#### **North American Optics Tube Validation**

All of these will be done on the high-Tc transition, with detectors highly loaded by the room. Some may require special coupling optics; prime focus is near tube window.

| Test                  | Equipment needed           | Notes                                                         |
|-----------------------|----------------------------|---------------------------------------------------------------|
| Band properties       | FTS                        | Width and placement. Pass/fail, not calib.                    |
| Pol. angle and effic. | Chopped polarized source   | Pass/fail, not calib.                                         |
| Optical efficiency    | Beam-filling thermal loads | Pass/fail                                                     |
| Beam maps at window   | Thermal beam mapper        | Verify reasonable illumination patterns, look for vignetting. |
| Scattering maps       | Non-thermal beam mapper?   | Estimate total power that will miss mirrors.                  |

#### North American Telescope (Test-build) Validation

(Cryo-free tests)

| Test                      | Equipment needed                              | Notes                                                                                 |
|---------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------|
| Individual mirror surface | Laser tracker                                 | Mostly off the shelf, could customize reflector movement and thermal gradient sensors |
| Multi-mirror alignment    | Holography setup<br>(tower, source, receiver) |                                                                                       |
| Pointing                  | Star camera                                   |                                                                                       |
| Sidelobes                 | Sidelobe source, warm receiver (freq = ?)     |                                                                                       |



#### **On-site Telescope Validation**

(Cryo-free tests)

| Test                      | Equipment needed                              | Notes                                                                                 |
|---------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------|
| Individual mirror surface | Laser tracker                                 | Mostly off the shelf, could customize reflector movement and thermal gradient sensors |
| Multi-mirror alignment    | Holography setup<br>(tower, source, receiver) |                                                                                       |
| Pointing                  | Star camera                                   |                                                                                       |



#### **On Site Full-system Validation and Calibration**

| Test            | Equipment needed                                       | Notes                                                                                  |
|-----------------|--------------------------------------------------------|----------------------------------------------------------------------------------------|
| Far Sidelobes   | Coherent sources                                       | Pass/Fail or calibration?                                                              |
| Band properties | FTS (easily mounted/moved)                             | Need calibration requirement.                                                          |
| Pol Angle       | Options: tower, drone, or celestial                    | Need calibration requirement.                                                          |
| Pol Efficiency  | Options: tower, drone, or celestial                    | Need calibration requirement.                                                          |
| Time Constants  | Chopped source(s).<br>[Do we need a hole in a mirror?] | Need calibration requirements on precision, acceptable range, and measurement cadence. |

(Main beams and gain calibration will come from celestial sources.)

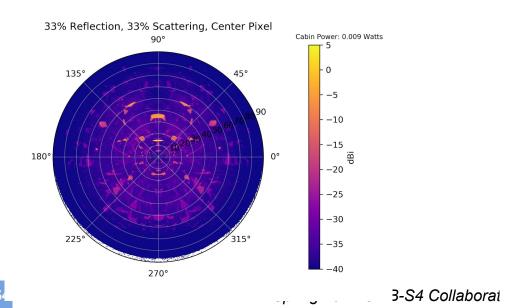
## **Future Work and Open Questions**

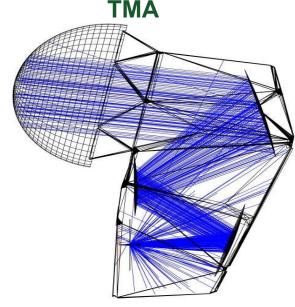
- Other groups working to define calibration requirements based on instrument-specific studies and flowdown from science targets
  May be different at each site, but will have separate sets of calibration hardware
- Use these requirements to design calibration hardware, building on experience from current generation experiments as much as possible
- Coordinate within LATs and with other groups (especially MAT and Sites) on the calibration hardware plan
- Looking for feedback on...
  - Is anything missing from the measurement list or PBDR chapter?
  - What's the most important calibration hardware to design early?
  - Are there any other thoughts or concerns about LAT calibration hardware? (or baffle finishes)

#### **Bonus Slides**



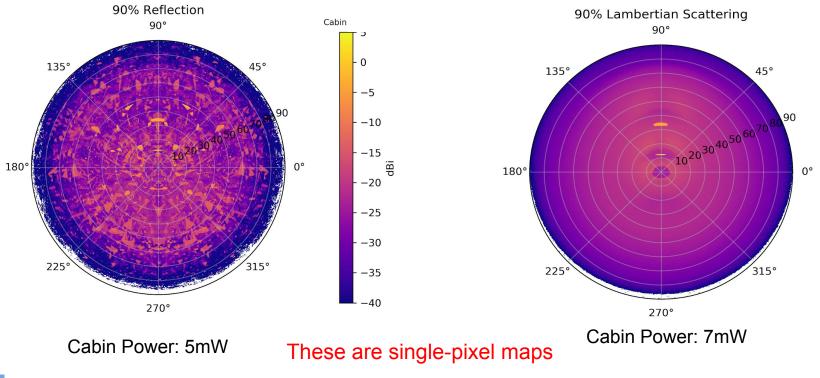
## Measurements in progress



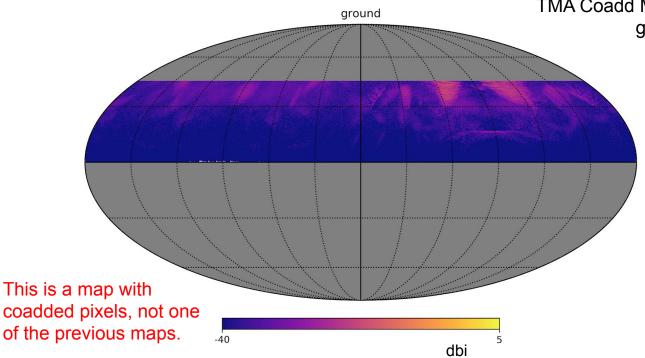

### Method: Zemax non-sequential ray-tracing

Using 1% scattering at ~ location of cryostat window,


- Vary cabin wall parameters: Specular reflection, Absorption, Lambertian scattering.
- Coadd sidelobes (correcting to put main beams on top of eachother) using 172 pixels. 200mm grid inside of 4m x 2.8m elliptical focal plane with up to 200mm random offset applied to each.





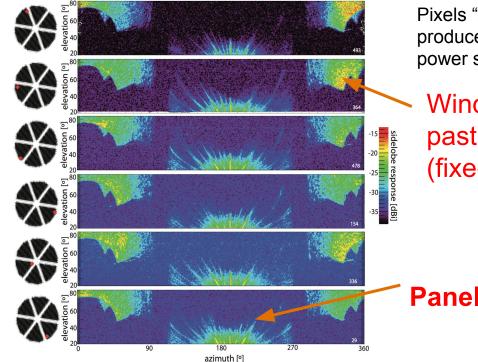

#### TMA Sidelobe Map - specular vs lambertian cabin walls

Scattering cabin walls blur sharp sidelobe features.



CMB-S4

# Angles that could hit the ground (all boresight rotations)




TMA Coadd Map: 90% reflection with ground mask

Define ground patch (at all boresight angles) to find power spectra of sidelobes which hit the ground at 45° elevation.



## SPT-SZ sidelobe maps (J. Mehl + J. McMahon, ~2009)



Pixels "A" through "F" sampled to produce healpy maps and generate power spectra

Window scattering spillover past shields, ignored here (fixed w/ later shields).

Panel gap lobes

### Simulated SPT panel gap maps

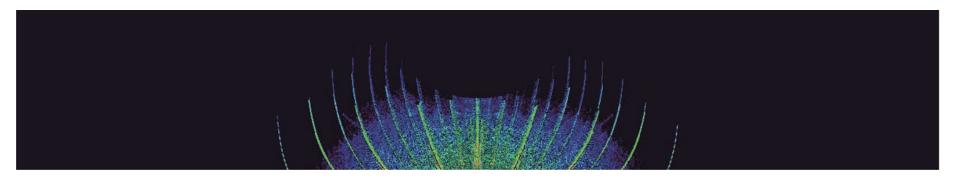



Image: McMahon, Mehl

Calculated in flat-sky approximatiuon

