

Kirit Karkare

SAT Calibration Hardware

Things to measure **Hardware** Main beams Near-field beam mapper Large thermal chopper Far-field flat mirror Sidelobes Mast TQU beams/pol angles Amplified microwave source (+ rotating polarized stage) Sparse wire grid, dielectric sheet Fourier Transform Spectrometer Bandpasses Optical filters Narrowband source Time constants Optical efficiency Aperture-filling thermal load Helmholtz coil Magnetic sensitivity Accelerometers → RF sources Star camera Pointing

Far-field measurements

Thermal chopper 24" aperture

Far-field flat mirror

Far-field calibration requirements

Each SAT needs a clear line-of-sight to a mast/source ~200m away (distance somewhat flexible)

Mast should extend to [TBD] degrees above clear horizon as viewed with mirror

Mase can be raised/lowered

Expect to perform calibrations with many (all?) SATs simultaneously

SAT and mast building need to communicate, including data (e.g. TTL signal)

Tyler St. Germaine

Sidelobes, Pol, Bandpass

Far sidelobe measurements

Amplified broad spectrum noise source

FTS

Rotating polarized source (referenced to gravity)

Additional requirements

For far-sidelobe measurements, each SAT needs to see a mast/source on the same building. Mast should be extendable to higher than the far-field measurement [TBD].

Calibrators (far-field flat, thermal load, FTS, etc.) need to be taken from lab into the ground shield, and then mounted on the SATs

- Clearance around lab doors and stairs
- Ground shield door
- Lifting strategy

Communication to apparatus (and people!) on the mount from inside

Far-field flat mounting

Far-field flat mirror

