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Assuming a detection of  has been made.  

Then what?

r
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Synergies and challenges 
Outline 

• How do we know it is from inflation? 


• Look at statistics? 


• Cross-correlations?


• Challenges 


• Foregrounds and secondaries 


• `Intrinsic’ signal


• For discussion: what if we don’t detect a signal w S4?
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Beyond  r

• Prediction for PS: 


• In SFSR . Consistency check 


• But, in SFSR . Hard to do with CMB (see e.g. Dodelson 2014)


• Can try using multi-messenger approach (Tania Regimbau, Robert Caldwell’s talks, see also e.g. Meerburg et al 2015); but scaling really 
model dependent (see Kinney 2021) — ?


• Beyond the PS, look at higher order correlation functions, e.g. bispectrum (see e.g. Muresuke 2014, Meerburg et al 2016, Duivenvoorden, 
Meerburg, Freese 2019)


• For SFSR, all these are slow-roll suppressed (see e.g. Maldacena & Pimentel 2012). 


• Even when adding additional degrees of freedom there is a bound (Higuchi bound, mass of spin-2 mediator particle is bound, cant be 
massless, see e.g. Bordin et al 2016); 


• Specifically, correlating e.g. a tensor ( ) with two scalars ( ) should have zero squeezed NGs even when adding a field. Caveat when 
breaking isometries of dS (e.g. solid inflation, Endlich et al 2012, Bordin et al 2018) or higher order partially massive particles (Baumann et al 
2017)


• So to leading order, perhaps we can use the squeezed limit of tensor NGs to determine if gravitational waves are coming from `inflation’ at all

Pt(k) ∝ r (k /k*)nt

nt < 0

|nt | ≪ 1

Neff

γ ζ

Targets of interest 
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Tensor NGs
Forecasts 

• Forecasts show that we can do really well on squeezed limits (see S4 DSR, 
science book)


• NGs are therefore typically generated away from squeezed limit (equilateral); 
those in general, unfortunately, are harder to constrain
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Cross-correlations (2) 

• Assuming there exist tensor NGs. In the squeezed limit, can we cross 
correlate between different data? 


• Example 1: primary CMB x spectral distortions 


• Example 2: primary CMB x direct GWs 

Squeezed NGs

6



Ex. 2: primary CMB x direct GWs 

• Anisotropies in the energy density of primordial GW can be 
generated from squeezed   (Adshead et al. 
2020, Malhotra et al. 2021, Dimastrogiovanni et al. to appear)


• Long-short mode correlations leads to modulations of GW energy 
density  arising from different regions


•  probes ultra-squeezed configurations,  at 
interferometer or PTA scales 


• Needs significant enhancement of squeezed NGs , and 
blue tensor spectrum 


⟨γks
γks

ζkl
⟩, ⟨γks

γks
γkl

⟩

(⟨γks
γks

⟩)

⟨CMB − GW⟩ kGW
s

fNL ≫ 1
nt > 0

⃗k CMB
l

⃗k GW
s

− ⃗k GW
s

CMB: 

 distortions:μ

⃗k CMB
s

− ⃗k CMB
s

⃗k CMB
l

⃗k CMB
l

⃗k SD
s

− ⃗k SD
s

GW:
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• Observations limited by low angular resolution of GW 
detectors , need a high sensitivity 
network e.g. futuristic BBO


• Cross-correlations may also help to detect primordial 
anisotropies in presence of foregrounds


• Can also correlate  from , and non-

zero  from  could hint to parity 
violation…
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Ex. 2: probing  from ⟨γγζ⟩ ⟨T − GW⟩

Cross-correlation only forecast for a BBO level experiment


CVL error from  :  ⟨T − GW⟩
ΔfNL

fNL
∼

1.4
ℓmax(ℓmax + 2) − 3

…more in Dimastrogiovanni, Fasiello, Malhotra, Meerburg, Orlando, to appear



Challenges
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Challenges for a detection 
General limitations 

• Sources that look the same/similar (bias)


• Statistically 


• Spectrally 


• Sources that add variance (noise)


• Typically, both occur


• To mitagate:


• Identify and model / project / de-source 


• *note that that we treat these as noise but these are also signal
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The CMB bispectrum 
Example 

• Sources that look the same/similar (bias)


• E.g. ISW-lensing (see Hill 2018, Coulton et al in prep)


• Sources that add variance (noise)


• E.g. lensing (but in principle all above sources as well, see Coulton et al 2019)


• Galactic foregrounds; however here we will likely rely on simulations to check if they 
contain statistics that is similar to signal; obviously cleaning the data, as we do for 
the PS, will be critical 


• Note that higher order statistics in principle have the advantage that there are more 
dof, which benefits our ability to distinguish it from signal
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The CMB bispectrum 
Foregrounds (temperature only) 
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Local

Orthogonal 

Equilateral

Credits: Will Coulton



The CMB bispectrum 
Intrinsic bispectrum 

• Besides primordial and secondary sources, the 
CMB will also contain intrinsic bispectra, simply 
due to non-linear evolution of perturbations 


• These could also be possible sources of 
confusion (and extra variance); 


• Good news is that while they could be detectable 
with upcoming surveys (see Coulton 2021), they 
likely would not interfere with search for 
primordial NGs
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Detectability w S4



Discussion and conclusions 

• If we detect  we should 


• Confirm it is from inflation


• Look for statistics beyond the PS


• Challenges are well characterized for CMB only measurement, but we should think more about those for cross 
correlations (general synergies)


• Think more how to practically constrain GWs using large scale structure 


• If we don’t detect ?


• Could still constrain (Maldacena) consistency relation


• Could also look for trispectra which could potentially probe spin-2 fields (and higher) (see e.g. Bordin et al 
2016) 


• Obviously, constraining trispectra will open up a new can of worms, machine learning?

r

r
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Cross-correlations (1) 

• For sake of confidence, can we confirm the primordial nature of 
the GWs using other tracers?


• In the large scale structure, very challenging to ‘constrain’ 
tensor modes. (See e.g. Masui & Pen 2012, Schmidt et al 2013, 
Chisari et al 2014, Biagetti & Orlando 2020,  `fossil’ effects are 
promising) 


• One example is curl lensing; presence of large scale primordial 
GWs can induce lensing signal with odd parity structure.


• In principle detectable; would provide proof of existence of large 
scale gravitational waves (Sheere, van Engelen, Meerburg, 
Meyers 2016)

Curl lensing  
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Intermezzo 
Why is it hard to constrain non-local NG in the CMB?

• First, tensors decay 


• Second, and this is general for scalar/tensor NG in the CMB, on small scales NG are 
severely affected by blurring (See Kalaja, Meerburg, Pimentel & Coulton 2020)


• As a result, the improvement on NGs of these types does not improve as mode-counting


• Interestingly, higher n-point functions can exceed mode counting (e.g. trispectrum) 

Figure 1: The blurriness of the last scattering surface at short scales washes out our ability to
detect primordial non-Gaussianity. In the figure, we show a cartoon that largely exaggerates
this e↵ect for illustration purposes. When we measure the correlations within a triangle
in the sky, we must average over all possible triangles along the same line of sight. This
averaging reduces the signal to noise ratio as a function of the survey resolution `max.

only the squeezed and collapsed limits of correlators. This greatly simplifies calculations of
S/N ratios, allowing us to adapt the e↵ect of the blurriness and to extend the argument
to all (N � 1)-spectra. Despite the reduced phase space in restricted kinematics, for cer-
tain shapes, the presence of damping at small scales turns out to have little influence on
the S/N scaling. Intuitively, as shown in Fig. 2, when large scale perturbations are corre-
lated with small ones, the signal is well defined since the possible triangles keep the same
shape along the line of sight. On the other hand, a signal coming from the correlation of
perturbations with a similar scale (which is below the damping scale) receives contributions
from di↵erent shapes due to the thickness of the last scattering surface. Thus the average
over all possible triangles along the line of sight produces a blurriness that reduces the S/N .
We show that, indeed, equilateral-like shapes have a more reduced S/N than shapes with
di↵erent wavelengths modes correlated. In particular, we find that squeezed bispectra and
collapsed trispectra have a large S/N scaling, in the case where it is sourced by the exchange
of very light particles during inflation. These results were already shown in Ref. [18] and
Refs. [19, 20] for the bispectrum and the trispectrum respectively. However, the enhanced
scaling of the trispectrum needs to be interpreted properly, within a specific model generating
the shapes [21]. We discuss this later in the paper.

We will confirm our heuristic estimates for the bispectrum and the trispectrum with a
full-sky Fisher estimate. Here, we will use simplified templates of non-Gaussianity, that still
capture the relevant physics of the ab initio shapes. We also include E-mode polarization in
our estimates, and show that they increase the S/N ratio, sometimes parametrically in `max.
Our interpretation of this finding is that polarization knows about the velocity field around
recombination, and e↵ectively increases the dimensionality of the CMB to be slightly above
2D. A similar e↵ect is found in Ref. [22], where Rayleigh scattering is included as a tracer of

Thus the 3-point correlation function is the bispectrum, the 4-point correlation function is the trispectrum,
etc.

– 3 –

Figure 2: For shapes of non-Gaussianity peaked around the squeezed limit, blurriness does
not reduce the S/N ratio much. This is because within the same line of sight the possible
triangles do not change shape drastically. For equilateral-like non-Gaussianity, we have to
average over triangles with various shapes and the blurriness reduces the S/N significantly.

primordial fluctuations. Adding data to the primary CMB temperature modes only improves
the `max scaling of shapes for which the scaling is not already optimal (e.g. squeezed shapes,
which already reach mode-counting scaling).

The paper is organized as follows: in Sec. 2, we briefly review the shapes of the correla-
tors in the squeezed and collapsed limits; in Sec. 3, we show the theoretical estimates of the
S/N ; in Sec. 4, we outline the numerical Fisher analysis and compare the results with the
theoretical ones; in Sec. 5, we discuss the results of the paper and future prospects. In the
appendices we include additional technical details and derivations: App. A, B and D contain
a brief review of CMB statistics and S/N derivation; in App. C we explicitly show the e↵ect
of di↵usion damping, and in App. E we derive multiple squeezed and collapsed limits.

Results The signal-to-noise ratio is a function of various quantities: `max (`min), the smallest
(largest) angular resolutions of the survey; fNL, the size of the non-Gaussianity2; fsky, the
available fraction of the sky being measured; and the details of the shape–local, equilateral,
degree of correlation function, etc. For weak non-Gaussianity, the dependence on fNL and
fsky is very simple. They appear as overall factors in the signal-to-noise. The dependence
on `max, `min (or kmax, kmin for a 3D survey) is more complicated. A detailed analysis of the
various shapes gives us ✓

S

N

◆2

⇠ (fskyfNL)2`pmax , (1.1)

where we omit numerical factors and the `min dependence3. The power p depends on the
shape of the non-Gaussianity and whether `max is above or below the damping scale `D. We
parametrize a large family of non-Gaussian shapes by their behavior around squeezed and
collapsed limits, and find the corresponding scaling p above and below the damping scale.
The resulting values of p are summarized in Tab. 8.

2In this case, fNL is a general parameter, not to be confused with the amplitude of the bispectrum.
3In principle, `min is limited by the fraction of the sky observed. For simplicity, we assume `min to have a

fixed value.

– 4 –
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Ex. 1: primary CMB x spectral distortions

• Spectral distortions are generated by the injection of energy 
from the dissipation of acoustic waves in the photon-baryon 
fluid.


• They are quadratic in primordial perturbations:   


• Probe scales smaller than primary CMB. 


• : sensitivity to very squeezed NGs 


• Previous work considered scalar NGs with .   
(see e.g. Pajer and Zaldarriaga 2012,  Emami et. al. 2015, 
Shiraishi et. al.    2015,  Ota 2016,  Ravenni et al. 2017,   
Cabass et. al. 2018)


• In the cosmic variance limit, 

μ, y ∼ ζ2, γ2
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Ex. 1: tensor NGs from  ⟨CMB − μ⟩

•  vs  :   transfer function:


• pro:  transfer function probe a larger window of scales than 


• con:  transfer function is 5 orders of magnitude smaller than 


• Net effect: detecting squeezed  is going to be challenging, 
any signal is obscured by 


• A large independent amplification on  is needed, no viable models currently 
in literature (Orlando, Meerburg, Patil, to appear)


• On squeezed :


• probed by 


• Signal is vanishing if bispectrum is isotropic (similar to  and )


• Need to introduce primordial anisotropies 


• Off diagonal   would be sourced by anisotropic NGs

γ ζ μ

γ ζ

γ ζ

⟨γl γs γs⟩, ⟨ζl γs γs⟩
⟨γl ζs ζs⟩, ⟨ζl ζs ζs⟩

γ

⟨γl ζs ζs⟩

⟨Bμ⟩

⟨BT⟩ ⟨BE⟩

⟨Bμ⟩

see, e.g., Chluba et. al. 2015

Orlando, Meerburg, Patil, to appear 
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