SZ Calibration of Baryonic Feedback Effects

Colin Hill
Columbia University
Flatiron Institute - Center for Computational Astrophysics

CMB-S4 Collaboration Meeting, Zoom, August 2021

arXiv:2103.05582
w/ F. McCarthy, M. Madhavacheril

+ in prep. w/ N. Battaglia, S. Ferraro, M. Madhavacheril, E. Schaan
What is the problem?
Baryonic Effects on $P(k)$

Springel+ (2017)
Implications

If not modeled accurately, these effects bias parameter inference from, e.g., the weak lensing power spectrum.

Huang+ (2018)
Implications

If not modeled accurately, these effects bias parameter inference from, e.g., the weak lensing power spectrum.

Huang+ (2018)
What about CMB observables?
CMB Lensing

Similar to galaxy WL case, inaccurate modeling of baryonic effects can bias inference of (e.g.) $\Sigma m_\nu$ from CMB lensing power spectrum.
Similar to galaxy WL case, inaccurate modeling of baryonic effects can bias inference of (e.g.) $\Sigma m_\nu$ from CMB lensing power spectrum.

Mitigation:
1. scale cuts
2. use external tracers to remove low-z lensing signal
3. marginalize over baryonic feedback parameters

McCarthy, Foreman, & van Engelen (2020)
CMB Lensing

Via lensing, baryons can even affect the primary TT/TE/EE power spectra!

Seven hydro sims:

McCarthy, JCH, & Madhavacheril (2021)
Potential Parameter Biases

This can produce surprisingly large biases on, e.g., $H_0$, $\omega_c$, and $N_{\text{eff}}$ for upcoming CMB experiments (not current!)

Usual approach in primary CMB analyses to date:
“set it (default Halofit or HMcode in CAMB or CLASS) and forget it”

This will not suffice for CMB-S4! (or Simons Observatory)

McCarthy, JCH, & Madhavacheril (2021)
Potential Parameter Biases

This can produce surprisingly large biases on, e.g., $H_0$, $\omega_c$, and $N_{\text{eff}}$ for upcoming CMB experiments (not current!)

CMB-S4 $[\Lambda\text{CDM}]

1.6\sigma$ bias on $H_0$

1.6\sigma$ bias on $\omega_c$

CMB-S4 $[N_{\text{eff}}]$

1.2\sigma$ bias on $N_{\text{eff}}$

2\sigma$ bias on $\omega_c$

Not an issue for Planck or for current ACT/SPT data

McCarthy, JCH, & Madhavacheril (2021)
Mitigation Methods

Three strategies

1) Explicitly cut all TT data at ell>3000 (w/ small penalty in final parameter error bars) — 13% increase in $\sigma(N_{\text{eff}})$ for S4

McCarthy, JCH, & Madhavacheril (2021)
Mitigation Methods

Three strategies

1) Explicitly cut all TT data at $\ell > 3000$ (w/ small penalty in final parameter error bars) — 13% increase in $\sigma(N_{\text{eff}})$ for S4

McCarthy, JCH, & Madhavacheril (2021)
Mitigation Methods

Three strategies

1) Explicitly cut all TT data at $\ell>3000$ (w/ small penalty in final parameter error bars) — 13% increase in $\sigma(N_{\text{eff}})$ for S4

2) Marginalize over parameters describing baryonic effects
Mitigation Methods

Three strategies

1) Explicitly cut all TT data at $\ell > 3000$ (w/ small penalty in final parameter error bars) — 13% increase in $\sigma(N_{\text{eff}})$ for S4

2) Marginalize over parameters describing baryonic effects

Works for all sims tested:

Bias on $N_{\text{eff}}$

- $\Lambda$CDM+$N_{\text{eff}}$
- $\Lambda$CDM+$N_{\text{eff}}$+$A$+$\eta$

Bias mitigated by factor of $>100$
Mitigation Methods

Three strategies

1) Explicitly cut all TT data at ell>3000 (w/ small penalty in final parameter error bars) — 13% increase in $\sigma(N_{\text{eff}})$ for S4

2) Marginalize over parameters describing baryonic effects — but pay a penalty in parameter error bars: 13% increase in $\sigma(N_{\text{eff}})$ for S4 [coincidentally same as above]
Mitigation Methods

Three strategies

1) Explicitly cut all TT data at ell>3000 (w/ small penalty in final parameter error bars) — 13% increase in $\sigma(N_{\text{eff}})$ for S4

2) Marginalize over parameters describing baryonic effects — but pay a penalty in parameter error bars: 13% increase in $\sigma(N_{\text{eff}})$ for S4 [coincidentally same as above]

3) Delens the T and E-mode maps using the reconstructed $\kappa$ map (and/or external tracers like the CIB)
   —> Most robust, data-driven approach, and can actually improve the error bars on parameters [Green et al. (2016)]
   —> Challenge: need very high-L $\kappa$ information!

McCarthy, JCH, & Madhavacheril (2021)
A data-driven solution: (k)SZ calibration
Imaging Baryons with kSZ

kSZ tomography directly images the ionized gas distribution

Schaan+ (2021); see also Amodeo+ (2021); y-map from Madhavacheril, JCH, Naess+ (2020)
Imaging Baryons with kSZ

kSZ tomography directly images the ionized gas distribution

For galaxy-galaxy lensing ($g \times \kappa$), kSZ measures exactly the dominant baryonic correction (where the gas is located!); for lensing auto-spectra, modeling is needed.

Schaan+ (2021); see also Amodeo+ (2021)
Imaging Baryons with kSZ

kSZ tomography directly images the ionized gas distribution

For galaxy-galaxy lensing ($g \times \kappa$), kSZ measures **exactly** the dominant baryonic correction (where the gas is located!): example shown here for CMASS g-g lensing

Amodeo+ (2021); see also Schaan+ (2021)
Baryonic Corrections

Simple models

Initial assumptions:
- Neglect stellar distribution (consider stars only in setting fgas)
- NFW profile is not altered by baryonic feedback (we will come back to this)

Then:

\[
\frac{P_{mm}^{fb}}{P_{mm}^{no-fb}} = \frac{1}{P_{nn}} \left( f_c^2 P_{nn} + f_b^2 P_{ee} + 2 f_c f_b P_{ne} \right)
\]

\(P_{nn}\) = CDM power spectrum assuming NFW
\(f_c\) = fraction of matter in CDM
\(f_b\) = fraction of matter in gas
\(P_{ee}\) = electron (gas) power spectrum
\(P_{ne}\) = CDM-gas cross-power spectrum

Similarly, for galaxy-matter cross-spectrum:

\[
\frac{P_{gm}^{fb}}{P_{gm}^{no-fb}} = \frac{1}{P_{gn}} \left( f_c P_{gn} + f_b P_{ge} \right)
\]

measured by kSZ!
Baryonic Corrections

This works quite well

Halo model calculation using NFW for dark matter and Battaglia (2016) GNFW gas density profile, allowing parameters to vary
Baryonic Corrections

And we will measure gas profiles very well

kSZ cross-correlations with DESI galaxies (z~0.75)

Large-radius behavior can be improved by imposing consistency condition that $f_b \rightarrow f_{b,CMB}$

BFHMS (in prep.); see also forecasts in CMB-S4 DSR
Perhaps only a single-variable model is needed (on relevant scales).

At $k = 0.5 \, \text{h/Mpc}$, the baryonic suppression in $P(k)$ is predicted simply by the mean baryon fraction in $\sim 10^{14} \, M_{\odot}$ halos.
Ratio of the dark matter power spectrum in full-physics runs to that in dark matter-only runs

Idea: calibrate by measuring total feedback energy injected into gas via tSZ (e.g., Battaglia+2017)

Springel+ (2017)
Recent developments: ACTxDES tSZ x WL at 21σ

Inference of the Y-M relation via halo model fit to $y \times \kappa$ measurements indicates evidence of a break and strong feedback

Gatti, Pandey, Baxter, JCH+ (2021); Pandey, Gatti, Baxter, JCH+ (2021)
Calibration Strategy Recap

- For galaxy x galaxy/CMB lensing: measure galaxy x kSZ for same galaxies — this exactly measures the dominant baryonic correction term (~no modeling needed)

- For lensing auto-spectra (and P(k) more generally), modeling based on parametric fits to kSZ profiles will be required, but simple approaches already appear to do very well, and joint analysis with tSZ profiles will further constrain feedback parameters
Take-Home Messages

1) Baryonic effects bias parameter inference (even CMB)
2) kSZ measurements will dramatically help by directly measuring the gas profile
3) Some modeling will be required to extend to full range of observables (e.g., lensing auto-spec), but joint fits with tSZ will also help