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Requirements for Correlated Simulations

e Require many realizations (500 simulations or more) for statistical analysis

° , high-resolution (half-arcminute), multi-frequency
e Contains non-Gaussian Information and among different
components.

A natural solution is to generate N-body simulations and post-process them

(CrowCanyon, DC2, MDPL2, S10, Websky). Unfortunately, this approach is
computationally expensive.

However, once you have just a single realization of such simulation, you can use a
Deep Learning (DL) Generative Model to get around this restriction.
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et Detailed Schematic
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Prediction Step (Step#2 on the schematic)
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We train a conditional GAN (PIXGAN) to predict multiple fields (kSZ, tSZ, CIB, Radio
maps) from kappa maps.

In principle, you can predict any field(s) from any input field(s) using this network.
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For Example: LSS Simulation to Correlated CMB Sims
(Or the other way around)
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You can predict CMB fields from any 2D projected LSS simulation, and vice versa.
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mmDL Results: Source Counts & Power Spectra

Source Counts

104 —— CIB
—— Radio
—— Network
102 ---- S10
(F\ 0
= 10
3
b
102
104
0 2 4 6

S (my)
Han et al 2021, arXiv:2105.11444

L2+ 1)/(2m)C,

Power Spectra

103

107

10!

10°

10-*

1072

— K (x 100) —— Radio

— KL, —— Lensed CMB
el VA —— Network
— CIB -==- S10

0

2000 4000 6000 8000 10000
/4



mmDL Results: Cross-spectra and 3pt functions

Cross Spectra
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mmDL Results: 3pt functions
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Since we “stitch” up 1x1 sq deg tiles to full-sky maps, you don't necessarily expect the network to
preserve the correlations between large super-sample modes (ell < 200) and small scale modes ( ell >

200). But our network can recover them.



mmDL Results: 4pt functions
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mmDL Results: Variance of mmDL sims
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mmDL Data Product Release

We have generated 500 mmDL realizations using our network. These are fullsky simulations at
half-arcminute resolution at six different frequencies (30, 90, 148, 219, 277, and 350 GHz),

which include:

the lensing convergence map (k),

the kinetic Sunyaev-Zeldovich effect (kSZ),
the thermal Sunyaev-Zeldovich effect (tSZ),
the Cosmic Infrared Background (CIB)

the radio galaxies (Radio), and

the lensed CMB (T,Q,U)

The simulations are available publicly at:

° [NERSC] https://portal.nersc.gov/project/cmb/data/generic/mmDL/
° [Lambda] https://lambda.gsfc.nasa.gov/simulation/tb_sim_ov.cfm
° [PySM3] https://github.com/galsci/pysm (coming soon!)
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Takeaways from mmDL project

e MillimeterDL (mmDL) can reproduce a wide range of non-Gaussian summary
statistics.

e We can mass produce independent full-sky realizations from a single expensive
full-sky simulation.

e We can “stitch” small patches up to make a full-sky realization that reproduces all
the NG statistics.

e Using our methods, we can take a full-sky lensing convergence map from any
large-scale structure (LSS) simulation and generate the corresponding lensed
CMB and correlated foreground components at millimeter wavelengths.

e We can also adopt our procedure to quickly generate FG maps for
forward-modelling.

Han et al 2021, arXiv:2105.11444



Deep Learning for Correlated Simulations (Cont.)

% Network is trained at a particular fiducial cosmology and with a particular baryonic model.

K/
L <4

Missing associated catalogues.

&

» In order to generate the simulations, the network must have learned all the relevant statistics from
the fields (one-point, two-points, three-points, ....). Can we use this information to make “optimal”
summary statistics?

L)



Deep Learning for Correlated Simulations (Cont.)

% Network is trained at a particular fiducial cosmology and with a particular baryonic model.

> Given few simulations at different cosmology and byronic models (i.e. CAMELS simulations),
one might be able to train a network to generate simulations at new cosmology.

K/
L <4

Missing associated catalogues.
> A variation of our model can generate an associated catalogues along with fields.

% In order to generate the simulations, the network must have learned all the relevant statistics from
the fields (one-point, two-points, three-points, ....). Can we use this information to make “optimal”
summary statistics?

> Bayesian NN for rescue? (Villaescusa-Navarro 2021, astro-ph/2011.05992)


https://arxiv.org/abs/2011.05992

