CMB x LSS Simulations

"Synergies of Large Scale Structure Surveys with CMB-S4" CMB-S4 2021 Summer Collaboration Meeting

$\begin{array}{l} \textbf{Jia Liu} \\ \textbf{(UC Berkeley} \rightarrow \textbf{Kavli IPMU)} \end{array}$

with inputs from Marcelo Alvarez, Yuuki Omori, Francois Lanusse

Why Cross-Correlations?

See all other talks in this session

Why Simulations?

Survey pipeline: map \rightarrow statistics \rightarrow cosmology

Systematics — instrumentation (beam, bandpass, electronics...)

Astrophysics (baryons, intrinsic alignments...)

Covariance

Modeling

More Stringent

Why Correlated Simulations?

Survey pipeline: e.g. 6x2 analysis, CMB FGs x LSS

Systematics — instrumentation

(beam, bandpass, electronics...)

Astrophysics (baryons, intrinsic alignments...)

Covariance between CMB x LSS

Modeling beyond the linear theory

More Stringent

Typical CMB simulations

- 2D maps
- Single cosmology
- Gravity-only / approx. methods
- Full-sky / curved
- 1-10 Gpc boxes
- Painted observables

Examples: Sehgal+2010, Stein+2020 (Websky)

Typical LSS simulations

- 2D (lensing) and 3D (galaxies)
- More cosmologies
- Gravity-only, some hydro
- Often flat-sky
- \lesssim Gpc box
- HOD / Semi-analytic models

Examples: LSST DC2, Euclid Flagship, DES Buzzard, Magneticum, Aemulus, BAHAMAS, SLICS, Quijote, MassiveNuS, and many many more..

Typical CMB simulations

- 2D maps
- Single cosmology
- Gravity-only / approx. methods
- Full-sky / curved
- 1-10 Gpc boxes
- Painted observables

Examples: Sehgal+2010, Stein+2020 (Websky)

Typical LSS simulations

- 2D (lensing) and 3D (galaxies)
- More cosmologies
- Gravity-only, some hydro
- Often flat-sky
- SGpc box
- HOD / Semi-analytic models

Examples: LSST DC2, Euclid Flagship, DES Buzzard, Magneticum, Aemulus, BAHAMAS, SLICS, Quijote, MassiveNuS, and many many more..

Correlated sims need to accommodate **BOTH** worlds

Public CMB x LSS Simulations

- From LSS experts:
 - **Takahashi+2017** [κ^{gal} , κ^{CMB}]: 108 maps x full-sky, WMAP9
 - **BAHAMAS** (McCarthy+2018) [κ^{gal} , κ^{CMB} , tSZ]: 25 maps x 25 deg², Planck15, WMAP9
 - MassiveNuS (Liu+2018) [κ^{gal} , κ^{CMB}]: 10,000 maps x 12.25 deg², 100 cosmologies (M_v, A_s, Ω_{m})
- From CMB experts:
 - <u>MillimeterDL</u> (Han+2021) [κ^{gal} , κ^{CMB} , tSZ, kSZ, CIB, Radio, lensed CMB]: 500 maps x full-sky, WMAP5
 - **MDPL2synsky** (Omori in prep) [δ , κ^{gal} , κ^{CMB} , tSZ, kSZ, CIB, Radio]: 1 map x full-sky, Planck15

MULTI DARK PLANCK 2 SYNTHETIC SKY SIMULATION

- Based on the MultiDark Planck 2 *N*-body simulation (Klypin 2016, $L = 1 h^{-1}$ Gpc box with 3840³ particles), and associated halo catalogs.
- Galaxy evolution model (used for CIB/radio galaxies) from UniverseMachine (<u>Behroozi</u> 2018) and TRINITY (<u>Zhang 2021</u>).
- 1 full-sky realization (all the components provided as $N_{side} = 8192$ maps or catalogs).

- Ray-tracing computed on $N_{\text{side}} = 16384$. All the CMB secondaries are lensed using the lensing field.
- Accuracy of the simulation tested for various types of analyses (high- ℓ *TT*, 6×2pt, tSZ cross-correlation, component separation, delensing etc).
- Plans to implement various galaxy types via HOD.

Observable	Redshift range
CMB lensing	0 < z < 1089
tSZ	0 < z < 3.0
kSZ	0 < z < 3.0
radio	0 < z < 4.0
CIB	0 < z < 8.6
δ (lensed)	0 < z < 8.6
$\kappa_{\rm g}, \gamma_1, \gamma_2$	0 < z < 8.6

Roadmap to Stage 4 Correlated Simulations (my 2 cents)

Roadmap to Stage 4 Correlated Simulations (my 2 cents)

FastPM for the Gravity-only Simulations

Code: A particle-mesh gravity solver, with Potential Gradient Descent to improve small-scale clustering

Performance: 10⁷ faster than hydro simulation; 10⁴ faster than tree-PM N-body simulation; x10 slower than Websky (2LPT+peakpatch); used by the DESI collaboration

Opportunities: Lagrangian Deep Learning (astrophysics+painting); MADlens (differentiable lensing); flowPM (tensorflow-based/differentiability)

FastPM: Feng+2016 PGD: Dai+2018 LDL (*left img*): Dai & Seljak 2020 MADLens: Böhm+2020 FlowPM: Modi+2020

Challenges

- **Computing time** (for 10-100 correlated simulations)
 - A few x 10 million CPU-hours (need a large fraction of a supercomputer at once)
- Storage (~PB)
 - ~50TB per model (can be smaller if only keeping maps and catalogues)

• Joint requirements and validation

- With limited resources, what are the key requirements?
- Validation can take a long time

• Maintenance

- Documentation
- Data release
- Future upgrades

• Personnel

Training and acknowledging the simulation scientists

Also see "Report from the Tri-Agency Cosmological Simulation Task Force" by Battaglia+2020

Interested & want to get involved?

- PhD projects
- Postdoc positions (to be announced in the fall)
- or simply share thoughts!

contact:

jialiu@berkeley.edu (email address expires on 8/31/2021)

https://liuxx479.github.io/ (for updated contact later)